Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 September 2021 | Story Leonie Bolleurs | Photo Supplied
Dr Frikkie Maré is serving as one of the directors of the non-profit organisation, the Agri Relief Foundation (ARF).

The agricultural sector is used to facing events of abnormal impact, including floods, droughts, veld fires, and disease outbreaks. Even if it is possible to prepare against any of these risks by taking proper measures, for instance by having a farm emergency plan in place or by securing property properly, there are times when it is not possible or practical for the modern-day South African farmer to proactively manage all the risks they are facing.

It is in times like these that the newly established body, the Agri Relief Foundation (ARF), provides an invaluable service to the agricultural sector. 

Dr Frikkie Maré, Senior Lecturer in the Department of Agricultural Economics at the University of the Free State (UFS), is one of the directors of this non-profit organisation, which focuses on assisting agricultural producers in need. 

This initiative is the brainchild of a number of businesses in the agricultural sector.

He says although there are many institutions in South Africa assisting farmers, most of the current initiatives are geared towards large-scale disasters, such as severe droughts, floods, unpreventable pests and diseases, and veld fires that affect many producers.  

Benefiting the wider society

According to Dr Maré, the ARF will focus on helping individual agricultural producers who are in need; both financially and otherwise.  This may include elements such as the loss of grazing due to brown locust, assistance after a farm attack or murder to ensure the day-to-day running of the farm, and localised natural disasters such as floods, hail, severe cold, or fire.

The group of directors plays a key role in screening the applications for assistance and deciding, based on merit and the availability of resources, who they can assist.

Besides the direct benefit to the farmer, this initiative also adds value to the wider society. “When the sustainability of an agricultural producer is under threat, it also threatens the livelihoods of his/her workers and their families, the rural economy of the nearest town where they purchase production inputs and general groceries, as well as society at large, as less food and/or fibre will be produced.  The assistance of the ARF will therefore ripple out to a much larger level than only the agricultural producer,” explains Dr Maré. 

A learning experience

There is also a benefit for the university. In the classroom, Dr Maré will be able to share any knowledge he is gaining in this process with his students. “Agricultural Economics is fundamentally about ensuring the long-term sustainability of agricultural production through concepts, including but not limited to, production economics, natural resource economics, agricultural management, and marketing.  My involvement in the ARF will provide examples of what can go wrong in terms of primary production that threatens the sustainability of the enterprise and what can be done to assist,” he says. 

Any business or individual can contribute to this noble cause. Financial contributions as well as physical products such as transport, fuel, animal feed, and legal services are welcome. 

Dr Maré says they have already received contributions from companies such as Zoetis (animal health), which sponsor a part of their profit from certain products to the foundation on a continuous basis. Lavendula (animal feed) also sponsored the proceeds of a farmers’ information day.

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept