Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2021 | Story Nombulelo Shange | Photo André Damons
Nombulelo Shange, Lecturer in the Department of Sociology, asks what it would look like if we looked inward and invested in our own indigenous methods of nurturing and encouraging this and similar practices? Could other important scientific innovations emerge from it?

Opinion article by Nombulelo Shange, Lecturer in the Department of Sociology, University of the Free State.
Last year I wrote an opinion piece on the importance of indigenous knowledge, especially in healing practices. The piece detailed the origins of modern vaccines as an old, culturally appropriated African practice that was instrumental in fighting smallpox in 1700s Europe. That piece is perhaps even more significant this year, as many Africans are afraid of the COVID-19 vaccine. The hesitancy comes from a distrust of Western medicine, which has been responsible for many atrocities all over the world, as well as the South African biological warfare created by the apartheid government and led by Wouter Basson, who was dubbed ‘Dr Death’. 

African knowledge systems have come a long way – from being overlooked as valuable sciences or being misrepresented by Western scholars, who for a long time saw themselves as the only suitable custodians of our experiences, ideals, history, culture, and knowledge. Today, although a lot more needs to be done, we are seeing a rise in African intellectuals, practices, and solutions. In the academy, we see this in the calls for decolonised education, which has emphasised the importance of Southern African scholarly contributions locally and internationally. 

In our day-to-day lives, we also see this shift towards reclaiming African solutions to deal with modern-day challenges. Practices such as visiting sangomas/traditional healers and the general practising of African traditional religion were seen as taboo or often labelled as hedonism. Many were forced to acknowledge their ancestors or perform sacrifices in private. But today, many are openly practising their cultural rituals when they want to give thanks for good fortune, when they are struggling to find employment, and for both physical and emotional healing that individuals or the collective needs. Although not ‘scientifically verified’, the African herb called umhlonyane helped many during the COVID-19 pandemic, especially during the major waves that overwhelmed and threatened to cripple our healthcare system. Many have turned to this herb as a solution to help them fight COVID-19. Umhlonyane is commonly used by sangomas for a variety of reasons; to boost the immune system, for patients with illnesses that attack the respiratory system, and many other things. This kind of revitalisation and mainstreaming of indigenous knowledge systems and epistemological pedagogies can undo challenges such as vaccine hesitancy and general distrust of biomedicine, while elevating African knowledge.

The missing link

Despite these and many other positive strides that place African knowledge at the forefront, something is still missing, because we are still far from where we need to be as a continent. There are many things we can draw from to make sense of why the progress is slow. We could draw from the usual arguments around the missing, undervalued African Renaissance. We could also argue that while African ideals are gaining prominence, they are often only invoked as an ‘alternative’ or afterthought. Arguably, even with umhlonyane, it was only from desperation that people turned to it. All of these are valid, but I also what to argue that we are limited by a kind of epistemological slavery, where we use conflicting Western systems of knowledge production in producing African knowledge. We rely on Western methodologies for knowledge production, Western schooling systems for how we engage with and use the knowledge, and even Western systems for how we store and preserve the knowledge. 

Trapping African knowledge in Western epistemology

The April Cape Town fire, which has spread to the University of Cape Town and destroyed the African Studies library, is one illustration of the danger of trapping African knowledge in Western epistemological systems. Much of what was lost in the fire is work that will most likely be lost forever; it is possible that no other records of it exist elsewhere. The issue is that in Africa, knowledge is communally produced, shared, and owned. Western systems encourage the containment and individual ownership of knowledge. Traditionally, African knowledge is often shared in the sense that the process of producing and sharing this knowledge is done as a collective and is built into the day-to-day practices rather than being crafted as a separate experience in the way that mainstream Western education and research is done. 

Reimagining African epistemology 

There is an important method of passing down useful skills that you still find in African households even today. As kids, we often hated it, because it took us away from our games, watching TV, or general leisure time. As Zulus, we refer to it as ukuthunywa/thuma – the English translation of ‘running errands’ does not adequately represent what it means, but it will do. I want to argue that this practice has traditionally been an important epistemological tool for producing and sharing knowledge. As a child growing up in a family of farmers, for example, you are taught how to be a farmer through these ‘errands’. You might start off with small requests, such as having to watch while the grown-ups or older children perform certain tasks; as time goes on, you are expected to take on more and more responsibilities in the family trade or even in helping neighbours and other community members. Even when it came to storing and preserving knowledge, it was done in such a way that it was still easily accessible. It would be stored as rock art, songs and performances, everyday crafts, and practices. And contrary to Western beliefs that Africans never wrote or documented, for cultures such as the Egyptians and Ashanti, knowledge was even stored as written inscriptions. 

When we move away from ukuthunywa towards the more Western mainstream, some challenges arise. Students are almost exclusively taught in theoretical ways, separate from their everyday experiences, which makes it difficult to understand and value the knowledge and its place in society. Knowledge goes from being communally owned to being owned by an individual researcher or institution, which limits who has access to the information, who has the right to use it, and even limitations on how it can be used. At times, even the communities from which the knowledge originally came, are limited by copyright laws. I want to argue that if we had created African knowledge using African practices or possible methodologies such as ukuthnywa, the loss of the UCT African Studies section wouldn’t have felt so bad, because the knowledge would be actively existing in society and the ability to recreate and redocument it would feel within reach. 

The freeing of our indigenous knowledge systems requires that we shift from looking outwards for solutions. For example, instead of looking towards dangerous fossil fuel and expensive Western renewable energy solutions to address our ongoing energy crisis, why not look inward and invest in our own indigenous methods of creating cheaper, sustainable biogas using animal and food waste. Imagine if we did it in ways that empowers black rural women who are the custodians of this knowledge, so that while dealing with the energy issues, we simultaneously address poverty and environmental degradation. What would it look like if we continued to nurture and encourage this and similar practices? Could other important scientific innovations emerge from it? Could it grow to the level of informing global discourse? Could we finally be uhuru?

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept