Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 September 2021 | Story Leonie Bolleurs | Photo Sonia Small (Kaleidoscope Studios)
Dr Molapo Qhobela, the newly appointed Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact, will be speaking at the International Summit on the Sustainable Development Goals (SDGs) in Africa 2021.

Dr Molapo Qhobela, the newly appointed Vice-Rector: Institutional Change, Strategic Partnerships and Societal Impact at the University of the Free State (UFS), will be speaking at the three-day International Summit on the Sustainable Development Goals (SDGs) in Africa 2021. The summit will take place as follows:

Date: 13-15 September 2021 
Platform: A virtual gathering (register for the upcoming virtual summit)

Together with a wide array of thought leaders, including specialists, senior researchers, CEOs/directors, and the top structures of international organisations, he will address and engage with an audience of academics, practitioners, government authorities, representatives from civil society, and donors and sponsors from across the globe on the topic Partnerships for impact in Africa (session on 15 September from 12:30 to 14:00).

According to the host of the event, the University of Cape Town, the key aim of the International Summit on the SDGs in Africa is to mobilise collaborative efforts that will accelerate African-led activities in support of achieving the African Union's Agenda 2063 and the United Nations Sustainable Development Goals (SDGs) – a shared blueprint for working towards global peace and prosperity by 2030. The summit is also designed to identify concrete opportunities for research collaboration that will accelerate the achievement of the SDGs and Agenda 2063.

The talks, panel discussions, workshops, and breakout sessions will revolve around clear steps for implementation.

For more information, visit: http://www.sdgsafricasummit.uct.ac.za/

Background of Dr Molapo Qhobela

Dr Qhobela’s leadership and strategic direction have been sought by several large and complex organisations during his career. He is the immediate former Chief Executive Officer (CEO) of the National Research Foundation, and also the former Chair of the Global Research Council as well as the Agricultural Research Council. He is currently the Chairperson of the Tertiary Education and Research Network of South Africa. Dr Qhobela holds a PhD in Plant Pathology from the Kansas State University in the United States of America.

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept