Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 September 2021 | Story Nonsindiso Qwabe | Photo Supplied
Dr Samantha Potgieter.

As COVID-19 vaccines continue to be a topical issue in South Africa and indeed in the world itself, the Department of Human Resources held a webinar for the UFS community on 10 September that delved deeper into the questions surrounding the vaccine. 

Dr Samantha Potgieter, infectious disease expert at the Universitas Academic Hospital and affiliated Lecturer in the Department of Internal Medicine at the University of the Free State, addressed some commonly raised concerns about the COVID-19 vaccine and how it affects us.

Dr Potgieter started off by saying that coronaviruses have been causing outbreaks among humans for millennia. While COVID-19 is relatively mild and self-limiting in 80% of patients, 20% of patients are at risk of developing severe disease.
She said before a vaccine could be introduced to a population, it had to go through rigorous testing and clinical trials. Only once safety has been confirmed, it can be released and distributed. 

“This process usually takes about ten years; this is what we are used to. But it has happened much quicker for the COVID-19 vaccine, and I think this is a fact that many people misinterpret – that the evidence might not be that robust, which is certainly not the case. COVID-19 vaccines have gone through all this rigorous testing, thousands of patients had volunteered for trial testing studies. The point is that we already had the technology, vaccination is not something new to humans. So, these preclinical trials were able to happen very quickly, and because of the large number of infections and because the focus of the entire world was on finding a cure, it was a very set process to get these trials through the adequate phases.” 

She said the COVID-19 vaccine was approved by national regulators, manufactured to exacting standards, and only thereafter distributed – as is the case for all drugs released into the market.

How does the vaccine work?

Dr Potgieter said the vaccine works by producing antibodies against the COVID-19 virus. If you are infected with the COVID-19 virus after getting vaccinated, these antibodies bind to the virus and stop it from replicating.

“When you get infected with a disease such as COVID-19, natural antibodies are produced by the immune system to fight the disease. If you get infected again, the immune system will remember how to respond, and quickly destroy the virus. A vaccine can do the same, but without the risk of disease from natural infection. Vaccines work by imitating a bacteria or virus using either mRNA in the case of the COVID-19 vaccine, or a dead or weakened version of the bacteria or virus. The vaccine raises the body’s alarm. It trains the body to recognise and fight the virus. When the body encounters the real-deal virus, it is primed and ready to fight for the body’s health.”

She said South Africa had the mRNA vaccine in the form of the Pfizer vaccine, and the adenoviral vector vaccine in the form of the Johnson & Johnson vaccine.

Why should you get the vaccine?

Dr Potgieter said vaccines are safe and effective, and the most compelling reasons for getting vaccinated are the following:

-To protect yourself from severe disease
-To protect those around you who may be at risk of severe disease
-To restore the social and economic platforms of the country, and the world at large.
She said that while the vaccine does not prevent you from getting COVID-19, it offers better protection against the development of severe disease, and vaccinated people had 50% less chance of spreading the virus.
The most common side effects of the vaccine are the following:
-Pain at the injection site
-Swollen lymph nodes
-Fever
-Fatigue
-Headache
-Myalgia (muscle pain)

“These are indications that the immune system is mounting a response. When it mounts a response, it produces antibodies,” she said.

Answers to commonly asked questions are the following:

1. Can the vaccine alter my DNA?
“No, it goes nowhere near the nucleus of the cell.”

2. What happens when you get COVID in between the first and second doses?
“Some protection is conferred after the first dose, but maximum protection is conferred two weeks after the second dose. Vaccination is still advised.” 

Dr Potgieter said patients who were between vaccinations still show better recovery results than those without.

3. What about natural immunity?
“Natural immunity might confer better protection, but it runs the risk of severe disease. Yes, immunity can be gained through natural immunity, it can be gained through vaccination, and it can certainly be gained by a combination of the two.”

4. What about long-term side effects?
“Serious side effects that cause long-term health problems following any vaccination are very rare, including the COVID-19 vaccination.”

To get the answers to more of your questions, the webinar can be accessed via the following link: https://event.webinarjam.com/go/replay/43/053q6a8vay9a0qa2

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept