Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 September 2021 | Story Nonsindiso Qwabe | Photo Supplied
Dr Samantha Potgieter.

As COVID-19 vaccines continue to be a topical issue in South Africa and indeed in the world itself, the Department of Human Resources held a webinar for the UFS community on 10 September that delved deeper into the questions surrounding the vaccine. 

Dr Samantha Potgieter, infectious disease expert at the Universitas Academic Hospital and affiliated Lecturer in the Department of Internal Medicine at the University of the Free State, addressed some commonly raised concerns about the COVID-19 vaccine and how it affects us.

Dr Potgieter started off by saying that coronaviruses have been causing outbreaks among humans for millennia. While COVID-19 is relatively mild and self-limiting in 80% of patients, 20% of patients are at risk of developing severe disease.
She said before a vaccine could be introduced to a population, it had to go through rigorous testing and clinical trials. Only once safety has been confirmed, it can be released and distributed. 

“This process usually takes about ten years; this is what we are used to. But it has happened much quicker for the COVID-19 vaccine, and I think this is a fact that many people misinterpret – that the evidence might not be that robust, which is certainly not the case. COVID-19 vaccines have gone through all this rigorous testing, thousands of patients had volunteered for trial testing studies. The point is that we already had the technology, vaccination is not something new to humans. So, these preclinical trials were able to happen very quickly, and because of the large number of infections and because the focus of the entire world was on finding a cure, it was a very set process to get these trials through the adequate phases.” 

She said the COVID-19 vaccine was approved by national regulators, manufactured to exacting standards, and only thereafter distributed – as is the case for all drugs released into the market.

How does the vaccine work?

Dr Potgieter said the vaccine works by producing antibodies against the COVID-19 virus. If you are infected with the COVID-19 virus after getting vaccinated, these antibodies bind to the virus and stop it from replicating.

“When you get infected with a disease such as COVID-19, natural antibodies are produced by the immune system to fight the disease. If you get infected again, the immune system will remember how to respond, and quickly destroy the virus. A vaccine can do the same, but without the risk of disease from natural infection. Vaccines work by imitating a bacteria or virus using either mRNA in the case of the COVID-19 vaccine, or a dead or weakened version of the bacteria or virus. The vaccine raises the body’s alarm. It trains the body to recognise and fight the virus. When the body encounters the real-deal virus, it is primed and ready to fight for the body’s health.”

She said South Africa had the mRNA vaccine in the form of the Pfizer vaccine, and the adenoviral vector vaccine in the form of the Johnson & Johnson vaccine.

Why should you get the vaccine?

Dr Potgieter said vaccines are safe and effective, and the most compelling reasons for getting vaccinated are the following:

-To protect yourself from severe disease
-To protect those around you who may be at risk of severe disease
-To restore the social and economic platforms of the country, and the world at large.
She said that while the vaccine does not prevent you from getting COVID-19, it offers better protection against the development of severe disease, and vaccinated people had 50% less chance of spreading the virus.
The most common side effects of the vaccine are the following:
-Pain at the injection site
-Swollen lymph nodes
-Fever
-Fatigue
-Headache
-Myalgia (muscle pain)

“These are indications that the immune system is mounting a response. When it mounts a response, it produces antibodies,” she said.

Answers to commonly asked questions are the following:

1. Can the vaccine alter my DNA?
“No, it goes nowhere near the nucleus of the cell.”

2. What happens when you get COVID in between the first and second doses?
“Some protection is conferred after the first dose, but maximum protection is conferred two weeks after the second dose. Vaccination is still advised.” 

Dr Potgieter said patients who were between vaccinations still show better recovery results than those without.

3. What about natural immunity?
“Natural immunity might confer better protection, but it runs the risk of severe disease. Yes, immunity can be gained through natural immunity, it can be gained through vaccination, and it can certainly be gained by a combination of the two.”

4. What about long-term side effects?
“Serious side effects that cause long-term health problems following any vaccination are very rare, including the COVID-19 vaccination.”

To get the answers to more of your questions, the webinar can be accessed via the following link: https://event.webinarjam.com/go/replay/43/053q6a8vay9a0qa2

News Archive

Cardiology Unit involved in evaluation of drug for rare genetic disease
2013-01-04

Front from the left, are: Marinda Karsten (study coordinator and registered nurse),
Laumarie de Wet (clinical technologist), Charmaine Krahenbuhl (study coordinator and radiographer),
Lorinda de Meyer (administrator), Andonia Page (study coordinator and enrolled nurse);
back Dr Gideon Visagie (sub investigator), Dr Derick Aucamp (sub investigagtor),
Prof. Hennie Theron, (principal investigator) and Dr Wilhelm Herbst (sub investigator).
Photo: Supplied
09 January 2013


The Cardiology Research Unit at the University of the Free State (UFS) contributed largely to the evaluation of the drug Juxtapid (lomitapide), which was developed by the Aegerion pharmaceutical company and approved by the FDA (Federal Drug Administration). Together with countries such as die USA, Canada and Italy, the UFS’ Unit recruited and evaluated the most patients (5 of 29) for the study since 2008.  

The drug was evaluated in persons with so-called familial homozygous hypercholesterolemia (HoFH).  

Following its approval by the FDA, Juxtapid is now a new treatment option for patients suffering from HoFH. The drug operates in a unique way which brings about dramatic improvements in cholesterol counts.  

According to Prof. Hennie Theron, Associate Professor in the Department of Cardiology at the UFS and Head of the Cardiology Contract Research Unit, HoFH is a serious, rare genetic disease which affects the function of the receptor responsible for the removal of low-density lipoprotein cholesterol (LDL-C) (“bad” cholesterol) from the body. Damage to the LDL receptor function leads to extremely high levels of blood cholesterol. HoFH patients often develop premature and progressive atherosclerosis, which is a narrowing or blockage of the arteries.  

“HoFH is a genetically transmitted disease and the most severe form of hypercholesterolemia. Patients often need a coronary artery bypass or/and aortic valve replacement before the age of 20. Mortality is extremely high and death often occurs before the third decade of life. Existing conventional cholesterol-lowering medication is unsuccessful in achieving normal target cholesterol values in this group of patients.  

“The only modality for treatment is plasmapheresis (similar to dialysis in patients with renal failure). Even with this type of therapy the results are relatively unsatisfactory because it is very expensive and the plasmapheresis has to be performed on a regular basis.  

“The drug Juxtapid, as currently evaluated, has led to a dramatic reduction in cholesterol values and normal values were achieved in several people. No existing drug is nearly as effective.  

“The drug represents a breakthrough in the treatment of familial homozygous hypercholesterolemia. The fact that it has been approved by the FDA, gives further impetus to the findings,” says Prof. Theron.  

In future further evaluation will be performed in other forms of hypocholesterolemia.  

According to Prof. Theron, the findings of the study, as well as the recent successful FDA evaluation, once again confirms the fact that the UFS’ Cardiology Contract Research Unit is doing outstanding work.  

Since its inception in 1992, the Unit has already been involved in more than 60 multi-centre, international phase 2 and 3 drug studies. Several of these studies, including the abovementioned study, really affected the way in which cardiology functions.  

The UFS’ Cardiology Contract Research Unit is being recognised nationally and internationally for its high quality of work and is constantly approached for their involvement in new studies.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept