Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 September 2021 | Story Nonsindiso Qwabe | Photo Supplied
Dr Samantha Potgieter.

As COVID-19 vaccines continue to be a topical issue in South Africa and indeed in the world itself, the Department of Human Resources held a webinar for the UFS community on 10 September that delved deeper into the questions surrounding the vaccine. 

Dr Samantha Potgieter, infectious disease expert at the Universitas Academic Hospital and affiliated Lecturer in the Department of Internal Medicine at the University of the Free State, addressed some commonly raised concerns about the COVID-19 vaccine and how it affects us.

Dr Potgieter started off by saying that coronaviruses have been causing outbreaks among humans for millennia. While COVID-19 is relatively mild and self-limiting in 80% of patients, 20% of patients are at risk of developing severe disease.
She said before a vaccine could be introduced to a population, it had to go through rigorous testing and clinical trials. Only once safety has been confirmed, it can be released and distributed. 

“This process usually takes about ten years; this is what we are used to. But it has happened much quicker for the COVID-19 vaccine, and I think this is a fact that many people misinterpret – that the evidence might not be that robust, which is certainly not the case. COVID-19 vaccines have gone through all this rigorous testing, thousands of patients had volunteered for trial testing studies. The point is that we already had the technology, vaccination is not something new to humans. So, these preclinical trials were able to happen very quickly, and because of the large number of infections and because the focus of the entire world was on finding a cure, it was a very set process to get these trials through the adequate phases.” 

She said the COVID-19 vaccine was approved by national regulators, manufactured to exacting standards, and only thereafter distributed – as is the case for all drugs released into the market.

How does the vaccine work?

Dr Potgieter said the vaccine works by producing antibodies against the COVID-19 virus. If you are infected with the COVID-19 virus after getting vaccinated, these antibodies bind to the virus and stop it from replicating.

“When you get infected with a disease such as COVID-19, natural antibodies are produced by the immune system to fight the disease. If you get infected again, the immune system will remember how to respond, and quickly destroy the virus. A vaccine can do the same, but without the risk of disease from natural infection. Vaccines work by imitating a bacteria or virus using either mRNA in the case of the COVID-19 vaccine, or a dead or weakened version of the bacteria or virus. The vaccine raises the body’s alarm. It trains the body to recognise and fight the virus. When the body encounters the real-deal virus, it is primed and ready to fight for the body’s health.”

She said South Africa had the mRNA vaccine in the form of the Pfizer vaccine, and the adenoviral vector vaccine in the form of the Johnson & Johnson vaccine.

Why should you get the vaccine?

Dr Potgieter said vaccines are safe and effective, and the most compelling reasons for getting vaccinated are the following:

-To protect yourself from severe disease
-To protect those around you who may be at risk of severe disease
-To restore the social and economic platforms of the country, and the world at large.
She said that while the vaccine does not prevent you from getting COVID-19, it offers better protection against the development of severe disease, and vaccinated people had 50% less chance of spreading the virus.
The most common side effects of the vaccine are the following:
-Pain at the injection site
-Swollen lymph nodes
-Fever
-Fatigue
-Headache
-Myalgia (muscle pain)

“These are indications that the immune system is mounting a response. When it mounts a response, it produces antibodies,” she said.

Answers to commonly asked questions are the following:

1. Can the vaccine alter my DNA?
“No, it goes nowhere near the nucleus of the cell.”

2. What happens when you get COVID in between the first and second doses?
“Some protection is conferred after the first dose, but maximum protection is conferred two weeks after the second dose. Vaccination is still advised.” 

Dr Potgieter said patients who were between vaccinations still show better recovery results than those without.

3. What about natural immunity?
“Natural immunity might confer better protection, but it runs the risk of severe disease. Yes, immunity can be gained through natural immunity, it can be gained through vaccination, and it can certainly be gained by a combination of the two.”

4. What about long-term side effects?
“Serious side effects that cause long-term health problems following any vaccination are very rare, including the COVID-19 vaccination.”

To get the answers to more of your questions, the webinar can be accessed via the following link: https://event.webinarjam.com/go/replay/43/053q6a8vay9a0qa2

News Archive

Researchers international leaders in satellite tracking in the wildlife environment
2015-05-29

 

Ground-breaking research has attracted international media attention to Francois Deacon, lecturer and researcher in the Department Animal, Wildlife and Grassland Sciences at the UFS, and Prof Nico Smit, from the same department. They are the first researchers in the world to equip giraffes with GPS collars, and to conduct research on this initiative. Recently, they have been joined by Hennie Butler from the Department of Zoology as well as Free State Nature Conservation to further this research.

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from the computer. These systems make possible the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time. We can even communicate with the animals, calling up their positions or changing the tracking schedules.

“The satellite collar allows us to use the extremely accurate data to conduct research with the best technology available. The volume of data received allows us to publish the data in scientific journals and research-related articles.  

“Scientific institutions and the public sector have both shown great interest in satellite tracking, which opens up new ground for scientific research for this university. Data management can be done, using Africa Wildlife Tracking (AWT) equipment where we can access our data personally, store it, and make visual presentations. The AWT system and software architecture provide the researcher with asset tracking, GPS location reports, geo-fencing, highly-detailed custom mapping, history reports and playback, polling on demand, history plotting on maps, and a range of reporting types and functions,” Francois said.

Data can be analysed to determine home range, dispersal, or habitat preference for any specific species.

Francois has been involved in multiple research projects over the last 12 years on wildlife species and domesticated animals, including the collaring of species such as Black-backed Jackal, Caracal, African Wild Dog, Hyena, Lion, Cheetah, Cattle, Kudu, Giraffe, and Black Rhino: “Giraffe definitely being the most challenging of all,” he said.

In 2010, he started working on his PhD, entitled The spatial ecology, habitat preferences and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa.

 

Since then, his work has resulted not only in more research work (supervising four Masters students) but also in a number of national and international projects. These include work in the:

  • Kalahari region (e.g. Khamab Nature Reserve and Kgalagadi Transfrontier Park)
  • Kuruman region (Collared 18 cattle to identify spatial patterns in relation to the qualities of vegetation and soil-types available. This project took place in collaboration with Born University in Germany)
  • Woodland Hills Wildlife Estate and Kolomella Iron Ore – ecological monitoring
  • A number of Free State nature reserves (e.g. Distribution of herbivores (kudu and giraffe) and predators (camera traps)

Francois is also involved with species breeding programmes and management (giraffe, buffalo, sable, roan, and rhino) in Korrannaberg, Rustenburg, Hertzogville, Douglas, and Bethlehem as well as animal and ecological monitoring in Kolomella and Beesthoek iron ore.

Besides the collaring of giraffes, Francois and his colleagues are involved in national projects, where they collect milk from lactating giraffes and DNA material, blood samples, and ecto/endo parasites from giraffes in Southern Africa.

With international projects, Francois is working to collect DNA material for the classification of the nine sub-species of giraffe in Africa. He is also involved in projects focusing on the spatial ecology and adaptation of giraffe in Uganda (Murchison Falls), and to save the last 30 giraffe in the DRC- Garamba National Park.

This project has attracted a good deal of international interest. In June 2014, a US film crew (freelancing for Discovery Channel) filmed a documentary on Francois’ research (trailer of documentary). Early in 2015, a second crew, filming for National Geographic, also visited Francois to document his work.

 

More information about Francois’ work is available at the GCF website

Read Francois Deacon's PhD abstract

Direct enquiries to news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept