Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 September 2021 | Story Nonsindiso Qwabe | Photo Supplied
Dr Samantha Potgieter.

As COVID-19 vaccines continue to be a topical issue in South Africa and indeed in the world itself, the Department of Human Resources held a webinar for the UFS community on 10 September that delved deeper into the questions surrounding the vaccine. 

Dr Samantha Potgieter, infectious disease expert at the Universitas Academic Hospital and affiliated Lecturer in the Department of Internal Medicine at the University of the Free State, addressed some commonly raised concerns about the COVID-19 vaccine and how it affects us.

Dr Potgieter started off by saying that coronaviruses have been causing outbreaks among humans for millennia. While COVID-19 is relatively mild and self-limiting in 80% of patients, 20% of patients are at risk of developing severe disease.
She said before a vaccine could be introduced to a population, it had to go through rigorous testing and clinical trials. Only once safety has been confirmed, it can be released and distributed. 

“This process usually takes about ten years; this is what we are used to. But it has happened much quicker for the COVID-19 vaccine, and I think this is a fact that many people misinterpret – that the evidence might not be that robust, which is certainly not the case. COVID-19 vaccines have gone through all this rigorous testing, thousands of patients had volunteered for trial testing studies. The point is that we already had the technology, vaccination is not something new to humans. So, these preclinical trials were able to happen very quickly, and because of the large number of infections and because the focus of the entire world was on finding a cure, it was a very set process to get these trials through the adequate phases.” 

She said the COVID-19 vaccine was approved by national regulators, manufactured to exacting standards, and only thereafter distributed – as is the case for all drugs released into the market.

How does the vaccine work?

Dr Potgieter said the vaccine works by producing antibodies against the COVID-19 virus. If you are infected with the COVID-19 virus after getting vaccinated, these antibodies bind to the virus and stop it from replicating.

“When you get infected with a disease such as COVID-19, natural antibodies are produced by the immune system to fight the disease. If you get infected again, the immune system will remember how to respond, and quickly destroy the virus. A vaccine can do the same, but without the risk of disease from natural infection. Vaccines work by imitating a bacteria or virus using either mRNA in the case of the COVID-19 vaccine, or a dead or weakened version of the bacteria or virus. The vaccine raises the body’s alarm. It trains the body to recognise and fight the virus. When the body encounters the real-deal virus, it is primed and ready to fight for the body’s health.”

She said South Africa had the mRNA vaccine in the form of the Pfizer vaccine, and the adenoviral vector vaccine in the form of the Johnson & Johnson vaccine.

Why should you get the vaccine?

Dr Potgieter said vaccines are safe and effective, and the most compelling reasons for getting vaccinated are the following:

-To protect yourself from severe disease
-To protect those around you who may be at risk of severe disease
-To restore the social and economic platforms of the country, and the world at large.
She said that while the vaccine does not prevent you from getting COVID-19, it offers better protection against the development of severe disease, and vaccinated people had 50% less chance of spreading the virus.
The most common side effects of the vaccine are the following:
-Pain at the injection site
-Swollen lymph nodes
-Fever
-Fatigue
-Headache
-Myalgia (muscle pain)

“These are indications that the immune system is mounting a response. When it mounts a response, it produces antibodies,” she said.

Answers to commonly asked questions are the following:

1. Can the vaccine alter my DNA?
“No, it goes nowhere near the nucleus of the cell.”

2. What happens when you get COVID in between the first and second doses?
“Some protection is conferred after the first dose, but maximum protection is conferred two weeks after the second dose. Vaccination is still advised.” 

Dr Potgieter said patients who were between vaccinations still show better recovery results than those without.

3. What about natural immunity?
“Natural immunity might confer better protection, but it runs the risk of severe disease. Yes, immunity can be gained through natural immunity, it can be gained through vaccination, and it can certainly be gained by a combination of the two.”

4. What about long-term side effects?
“Serious side effects that cause long-term health problems following any vaccination are very rare, including the COVID-19 vaccination.”

To get the answers to more of your questions, the webinar can be accessed via the following link: https://event.webinarjam.com/go/replay/43/053q6a8vay9a0qa2

News Archive

Newly operational sequencing unit in genomics at UFS
2016-09-09

Description: Next Generation Sequencing  Tags: Next Generation Sequencing

Dr Martin Nyaga and his research assistant,
Tshidiso Mogotsi in the Next Generation
Sequencing Laboratory.
Photo: Charl Devenish

The Next Generation Sequencing (NGS) unit at the UFS was established as an interdisciplinary facility under the Directorate for Research Development, Faculty of Health Sciences and Faculty of Natural and Agricultural Sciences.

The aim of the NGS facility is to aid internal and external investigators undertaking studies on Deoxyribonucleic acid (DNA) sequencing, assembly and bioinformatics approaches using the more advanced Illumina MiSeq NGS platform.

The NGS unit became operational in 2016 and is managed by Dr Martin Nyaga and administered through the office of the Dean, Faculty of Health Sciences, under the leadership of Prof Gert Van Zyl. Dr Nyaga has vast experience in microbial genomics, having done his PhD in Molecular Virology.

He has worked and collaborated with globally recognised centres of excellence in Prokaryotic and Eukaryotic genomics, namely the J. Craig Venter Institute and the Laboratory of Viral Metagenomics, Rega Institute, among others.

The unit has undertaken several projects and successfully generated data on bacterial, viral and human genomes. Currently, work is ongoing on bacterial and fungal metagenomics studies through 16S rRNA sequencing.

In addition, the unit is also working on plasmid/insert sequencing and whole genome sequencing of animal and human rotaviruses. The unit has capacity to undertake other kinds of panels like the HLA, Pan-cancer and Tumor 15 sequencing, among others.

Several investigators from the UFS including but not limited to Prof Felicity Burt, Prof Wijnand Swart, Dr Frans O’Neil, Dr Trudi O'Neill, Dr Charlotte Boucher, Dr Marieka Gryzenhout and Dr Kamaldeen Baba are actively in collaboration with the NGS unit.

The unit has also invested in other specialised equipment such as the M220 Focused-ultrasonicator (Covaris), 2100 Bioanalyzer system (Agilent) and the real-time PCR cycler, the Rotor-Gene Q (Qiagen), which both the UFS and external investigators can use for their research.

Investigators working on molecular and related studies are encouraged to engage with Dr Nyaga on how they would like to approach their genomics projects at the UFS NGS unit. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept