Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 September 2021 | Story Marius Coetzee and Rulanzen Martin | Photo Supplied
From the left: Werner Stolze of Stolze Pianos (sponsor), Karlin Kock (Trio Con Brio), Dr Mageshen Naidoo (adjudicator – UP), Kagiso Ramosa (Trio Con Brio), Renette Bouwer (adjudicator – UJ), Maria Yasbeck (Trio Con Brio), and Prof Wessel van Wyk from UP.

The Trio Con Brio ensemble in the Odeion School of Music (OSM) was crowned winners of the open category during the final round of the national SASMT Ensemble competition, which took place on 22 September 2021.  The Trio Con Brio comprises OSM students Kagiso Ramosa (clarinet), Maria Yasbeck (violin), and Karlin Kock (piano).

OSM lecturers, Drs Danre Strydom, Sharon de Kock, and Anneke Lamont served as instructors and mentors during the preparation phase. “The trio prepared their concert programme with an interesting methodology, by having weekly instruction from all lecturers individually on a rotation basis,” says Marius Coetzee, Artistic Director of the Odeion School of Music Camerata (OSMC). Elsabé Raath serves as the principal instructor. 

The OSMC took second place in the concert programme, while the instructor of the OSM Brass Quintet, George Foster, and the convenor, Quinn Kakora, were also selected to participate in the first round of the competition. Their recital was highly ranked and came third in the first round.

 SASMT competition develops young musicians 

The first SASMT Pretoria Ensemble Competition took place in September 2017. It would be the first competition of this nature to be held in the northern region of South Africa. The goal was to create an opportunity for young musicians to compete in groups, rather than focusing on solo performances. The feedback from the initial competition was overwhelmingly positive, culminating in the decision to make it an annual event.

The competition aims to develop young musicians through collaborative participation and by encouraging the enjoyment of performing with others. Another objective is to foster understanding, love, and appreciation for ensemble music and the performance thereof among young musicians. 

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept