Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 September 2021 | Story Leonie Bolleurs | Photo Supplied
Prince Matova, a PhD student in the Department of Plant Sciences, has been working on breeding a maize that can resist the fall armyworm (FAW) – a maize-eating pest. Later in September, he will receive the Young Scientist Award from the Plant Mutation Breeding Division of the International Atomic Energy Agency (IAEA) and the Food and Agriculture Organisation of the United Nations (FAO).

Prince Matova, a PhD student in Plant Breeding at the University of the Free State (UFS), received the Young Scientist Award from the Joint Food and Agriculture Organisation of the United Nations (FAO)/International Atomic Energy Agency (IAEA) Division of Nuclear Techniques in Food and Agriculture for excellence in plant mutation breeding.

The IAEA Director-General, Mr Rafael Mariano Grossi, will officially announce the award at the 65th regular session of the IAEA General Conference that will take place later in September this year.

The award is given to scientists younger than 40, who have made a significant contribution and impact in the field of mutation breeding.

Matova, a researcher, research and agronomy manager, and maize and legumes breeder at Mukushi Seeds (Pvt) Ltd in Harare, Zimbabwe, says: “People have seen the little work that I have done, and they were happy with it. That makes me happy too.”

Other contributions

In the ten years collaborating with the IAEA, practising mutation breeding, Matova – who believes innovative thinking and self-motivation to be contributing factors to a successful scientist – has also been recognised for other outstanding contributions. These include the release of a cowpea mutant variety in 2017 and its wide dissemination across Zimbabwe, as well as the modernisation of the maize and cowpea national breeding programmes. He has also contributed two publications and appeared twice at IAEA Plant Mutation Breeding symposia. Furthermore, Matova has trained other scientists and fellows across Africa and collaborated with centres of excellence in plant breeding, research, and development.

Growing up, he never guessed that he would one day become an agricultural scientist. Matova was, however, very good at biology and believes that this is one of the reasons why he ended up in crop science. “I am enjoying every moment of it. I love innovativeness and inventions and I view hybrid maize variety development as the greatest innovation in plant breeding. Working for Mukushi Seeds is inspiring; I have a young and dedicated team and the environment allows me to explore my full potential.”

“I feel science solves problems and every day as I do my breeding work, I have this desire to achieve greatness by developing a super maize hybrid,” he says.

Displaying excellence

For the past three to four years, Matova has been working to breed maize varieties that can resist fall armyworm (FAW) – a maize-eating pest. He says the pest has caused significant maize crop yield and economic losses across Africa.

More than 300 million smallholder farmers across sub-Saharan Africa rely on maize for food and livelihoods. “These farmers have limited capacities to control the pest. They are using insecticides, which we have seen to effectively provide immediate control of the pest.” However, these pesticides have environmental and health issues. “It is against this background that we, as plant breeders, felt it was important to develop varieties that are resistant to the pest. It is a more environmentally friendly, less expensive, and more sustainable solution,” explains Matova.
In his research, he evaluated the breeding potential of exotic FAW-resistant donor lines with local lines. He also investigated the resistance response and stability of local cultivars and inbred lines against FAW. 

While working at the Zimbabwean Department of Research and Specialist Services (DR&SS), Matova collaborated with the International Maize and Wheat Improvement Center (CIMMYT), the University of Zimbabwe, the UFS, and the IAEA to look into the possibility of using mutation breeding in maize crop improvement, with the intention to enhance FAW-resistance in maize genotypes.

He introgressed FAW resistance into the elite breeding materials at both DR&SS and Mukushi Seeds, where he is currently working. Matova believes that although FAW resistance is currently a nice-to-have trait, going forward, all maize varieties released should have a baseline resistance to FAW.

Ultimately, his work generated important information that can guide research and maize breeding for FAW resistance in Southern Africa. All this information is free for researchers to use for the betterment of Africa and the world.

Inspired by greatness

There are a number of people in the industry and academia who have inspired Matova. The list includes Dr Cosmos Magorokosho (CIMMYT), Prof Hussein Shimelis (University of KwaZulu-Natal), Dr Fatma Sarsu (IAEA), Dr Marilyn Warburton (Agricultural Research Service in the United States Department of Agriculture), Dr Amsal Terekegne (ZAMSEED), and Dr John MacRobert (Mukushi Seeds). They all contributed in one way or another to influence Matova in a positive way towards becoming the passionate scientist he is today.

Besides this list of prominent names, Matova says that he was more recently also motivated and encouraged by his PhD supervisor and mentor, Prof Maryke Labuschagne, Professor in Plant Sciences at the UFS. “She is a very special person doing a wonderful job. Prof Labuschagne is kind, thorough, hardworking, and a good mentor,” he states.

Prof Labuschagne is very proud of Matova for receiving this award. “He has been working really hard, and this is a wonderful recognition of the time and effort that he has invested in his research,” she says.


News Archive

UFS professor addresses genetically modified food in South Africa in inaugural lecture
2016-09-23

Description: Chris Viljoen inaugural lecture Tags: Chris Viljoen inaugural lecture

At the inaugural lecture were, from the left front,
Prof Lis Lange, Vice Rector: Academic;
Prof Chris Viljoen; Prof Gert van Zyl,
Dean: Faculty of Health Sciences; back: Prof Marius Coetzee,
Head of Department of Haematology and Cell Biology;
and Dr Lynette van der Merwe, Undergraduate
Programme Director.
Photo: Stephen Collett

The first genetically modified (GM) crops in South Africa were planted in 1998. Eighteen years later, the country is one of the largest producers of GM food in the world. Those in support of genetically modified crops say this process is the only way to feed a rapidly growing world population. But those who criticise GM food describe it as a threat to the environment and safety of the population. Who is right? According to Prof Chris Viljoen of the Department of Haematology and Cell Biology at the University of the Free State, neither position is well-founded.

GM crops play a vital role in food security

While GM crops have an important role to play in increasing food production, the technology is only part of the solution to providing sufficient food for a growing world population. The major genetically modified crops produced in the world include soybean, cotton, maize and canola. However, the authenticity of food labelling and the long-term safety of GM food are issues that consumers are concerned about.

Safety and labelling of GM food important in South Africa
In his inaugural lecture on the subject “Are you really going to eat that?” Prof Viljoen addressed the importance of the safety and labelling of GM food in the country. “In order for food to be sustainable, production needs to be economically and environmentally sustainable. On the other hand, food integrity, including food quality, authenticity and safety need to be ensured,” Prof Viljoen said. 

Labelling of food products for genetic modification was mandatory in South Africa, he went on to say. “It allows consumers the right of choice whether to eat genetically modified foods or not.” The Consumer Protection Act of 2008 requires food ingredients containing more than 5% of GM content to be labelled. 

GMO Testing Facility world leader in food diagnostic testing
In 1999, Prof Viljoen spearheaded research in developing a GM diagnostic testing platform, and in 2003, a commercial diagnostic platform for GM status certification, called the GMO Testing Facility, was founded. The facility is a licensed Eurofins GeneScan laboratory   a world leader in food diagnostic testing   and provides diagnostic detection and quantification of genetically modified organisms (GMOs) in grain and processed foods for the local and international market.

Molecular diagnostic technology the future of food integrity, authenticity and safety
With GM labelling now well-established in South Africa, the next challenge is to establish the use of molecular diagnostic technology to ensure that food integrity, including food authenticity and safety is maintained, said Prof Viljoen.

“To the question ‘Are you really going to eat that?’ the answer is ‘yes’, but let’s continue doing research to make sure that what we eat is safe and authentic.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept