Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
01 September 2021 | Story Rulanzen Martin

As in previous years, the Department of South African Sign Language and Deaf Studies (SASL) – a pioneering force within deaf studies – will embark on a broader campaign to create much-needed awareness of the deaf. 

This year’s #UFSDeafAwarenesscampaign aims to inform and contribute to an inclusive society, not only among the UFS community, but also among the public. The department, together with the Centre for Universal Access and Disability Support, provides exceptional support to the 16 deaf and hard of hearing students at the UFS. 

Jani de Lange, Lecturer in Deaf Studies at the UFS, says the deaf forms part of the diverse South African community – “however, there are still many misconceptions about the deaf world. Therefore, deaf awareness plays an important role in facilitating a bridge between hearing and deaf people”.  

Awareness, duty, and social responsibility collide 

Many of the staff in the department considers themselves part of the deaf community. “They play a major role in educating others through our academic programmes, as well as continuous workshops and short learning programmes,” says De Lange. She continues, saying that by celebrating Deaf Awareness Month, “we are reminded of our role and responsibility towards the deaf.” 

The department also has a long-standing relationship with Mimosa Mall in Bloemfontein, with conversational students displaying their final group projects in the centre of the shopping mall.  Mimosa is also a partner in school-based projects, such as the Bartimea School for the Deaf and Blind in Thaba Nchu. “Every year, the department, together with our student association, Signals, and all interested Sign Language students, visits Bartimea, where we host a variety of activities with the children and also help the school with small maintenance projects. In 2019 – the last time we were able to visit the school – we repainted parts of the Foundation Phase’s playground,” De Lange says.

“We hope that the public will take the time to read about deafness, Sign Language, and the deaf community to understand the exciting traditions of the culture.”  The end goal is to encourage a greater understanding that ‘you do not need hearing to listen’

Getting the community involved 

To get people involved in the campaign, the department invites UFS staff to participate in a competition where they can learn how to introduce themselves in SASL. The department is also planning an informal training session for staff and students on 7 September 2021. 


The Department of SASL and Deaf Studies also presents a FREE Introduction to SASL short learning programme. 

  Click here for more information 


 #UFSDeafAwarenessMonth #DeafAwareness #DeafCommunity


                     


News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept