Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Emily Matabane.

“I love teaching hearing people Sign Language,” Emily immediately mentions when asked about herself, “so that they can communicate with Deaf people and work with them.” Part of her passion, though, was borne from personal hardship. Emily had a difficult experience when she entered the work environment in 2000, since she was the only Deaf person among an all-hearing staff. Can one even begin to imagine the frustration and isolation she must have experienced? It is no wonder, then, that her vision is for Deaf people to have equal access to information, and for the hearing and Deaf to be able to communicate with each other more freely. And the latter she is pursuing with all her energy.

“When I started working as a Teaching Assistant in the UFS Department of South African Sign Language (SASL) and Deaf Studies,” Emily recalls, “few students were interested in studying Sign Language, because they were not aware of Deaf people and Sign Language.” This has started to change, though, as Emily is noticing a drastic increase in the number of UFS students enrolling for SASL. “I am now familiar with a lot of hearing student who have done Sign Language at our university, and they are very friendly when I meet them. Also, because they are able to greet me in Sign Language!” It is important to note that the department teaches SASL modules to both Deaf and hearing students (and staff) who want to learn the language – which is now also available as an online option.

As a second-year student studying BEd, Emily has formed a close relationship with CUADS (Centre for Universal Access and Disability Support) at the UFS. “CUADS is doing a great job in assisting students with disabilities and catering for their needs. They assist students to have access to education on the same level as other students without disabilities.”

Sign Language is of vital importance to the Deaf community, since it is the language of accessibility for Deaf people. “We are proud and acknowledge Sign Language as a medium of communication,” says Emily. “It allows us to express ourselves, and to teach and transfer our Deaf culture from one generation to the other.”

Ultimately, Emily is hopeful that Sign Language will become embraced, celebrated, and recognised as equal to the other official languages in South Africa.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept