Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Emily Matabane.

“I love teaching hearing people Sign Language,” Emily immediately mentions when asked about herself, “so that they can communicate with Deaf people and work with them.” Part of her passion, though, was borne from personal hardship. Emily had a difficult experience when she entered the work environment in 2000, since she was the only Deaf person among an all-hearing staff. Can one even begin to imagine the frustration and isolation she must have experienced? It is no wonder, then, that her vision is for Deaf people to have equal access to information, and for the hearing and Deaf to be able to communicate with each other more freely. And the latter she is pursuing with all her energy.

“When I started working as a Teaching Assistant in the UFS Department of South African Sign Language (SASL) and Deaf Studies,” Emily recalls, “few students were interested in studying Sign Language, because they were not aware of Deaf people and Sign Language.” This has started to change, though, as Emily is noticing a drastic increase in the number of UFS students enrolling for SASL. “I am now familiar with a lot of hearing student who have done Sign Language at our university, and they are very friendly when I meet them. Also, because they are able to greet me in Sign Language!” It is important to note that the department teaches SASL modules to both Deaf and hearing students (and staff) who want to learn the language – which is now also available as an online option.

As a second-year student studying BEd, Emily has formed a close relationship with CUADS (Centre for Universal Access and Disability Support) at the UFS. “CUADS is doing a great job in assisting students with disabilities and catering for their needs. They assist students to have access to education on the same level as other students without disabilities.”

Sign Language is of vital importance to the Deaf community, since it is the language of accessibility for Deaf people. “We are proud and acknowledge Sign Language as a medium of communication,” says Emily. “It allows us to express ourselves, and to teach and transfer our Deaf culture from one generation to the other.”

Ultimately, Emily is hopeful that Sign Language will become embraced, celebrated, and recognised as equal to the other official languages in South Africa.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept