Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Emily Matabane.

“I love teaching hearing people Sign Language,” Emily immediately mentions when asked about herself, “so that they can communicate with Deaf people and work with them.” Part of her passion, though, was borne from personal hardship. Emily had a difficult experience when she entered the work environment in 2000, since she was the only Deaf person among an all-hearing staff. Can one even begin to imagine the frustration and isolation she must have experienced? It is no wonder, then, that her vision is for Deaf people to have equal access to information, and for the hearing and Deaf to be able to communicate with each other more freely. And the latter she is pursuing with all her energy.

“When I started working as a Teaching Assistant in the UFS Department of South African Sign Language (SASL) and Deaf Studies,” Emily recalls, “few students were interested in studying Sign Language, because they were not aware of Deaf people and Sign Language.” This has started to change, though, as Emily is noticing a drastic increase in the number of UFS students enrolling for SASL. “I am now familiar with a lot of hearing student who have done Sign Language at our university, and they are very friendly when I meet them. Also, because they are able to greet me in Sign Language!” It is important to note that the department teaches SASL modules to both Deaf and hearing students (and staff) who want to learn the language – which is now also available as an online option.

As a second-year student studying BEd, Emily has formed a close relationship with CUADS (Centre for Universal Access and Disability Support) at the UFS. “CUADS is doing a great job in assisting students with disabilities and catering for their needs. They assist students to have access to education on the same level as other students without disabilities.”

Sign Language is of vital importance to the Deaf community, since it is the language of accessibility for Deaf people. “We are proud and acknowledge Sign Language as a medium of communication,” says Emily. “It allows us to express ourselves, and to teach and transfer our Deaf culture from one generation to the other.”

Ultimately, Emily is hopeful that Sign Language will become embraced, celebrated, and recognised as equal to the other official languages in South Africa.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept