Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Emily Matabane.

“I love teaching hearing people Sign Language,” Emily immediately mentions when asked about herself, “so that they can communicate with Deaf people and work with them.” Part of her passion, though, was borne from personal hardship. Emily had a difficult experience when she entered the work environment in 2000, since she was the only Deaf person among an all-hearing staff. Can one even begin to imagine the frustration and isolation she must have experienced? It is no wonder, then, that her vision is for Deaf people to have equal access to information, and for the hearing and Deaf to be able to communicate with each other more freely. And the latter she is pursuing with all her energy.

“When I started working as a Teaching Assistant in the UFS Department of South African Sign Language (SASL) and Deaf Studies,” Emily recalls, “few students were interested in studying Sign Language, because they were not aware of Deaf people and Sign Language.” This has started to change, though, as Emily is noticing a drastic increase in the number of UFS students enrolling for SASL. “I am now familiar with a lot of hearing student who have done Sign Language at our university, and they are very friendly when I meet them. Also, because they are able to greet me in Sign Language!” It is important to note that the department teaches SASL modules to both Deaf and hearing students (and staff) who want to learn the language – which is now also available as an online option.

As a second-year student studying BEd, Emily has formed a close relationship with CUADS (Centre for Universal Access and Disability Support) at the UFS. “CUADS is doing a great job in assisting students with disabilities and catering for their needs. They assist students to have access to education on the same level as other students without disabilities.”

Sign Language is of vital importance to the Deaf community, since it is the language of accessibility for Deaf people. “We are proud and acknowledge Sign Language as a medium of communication,” says Emily. “It allows us to express ourselves, and to teach and transfer our Deaf culture from one generation to the other.”

Ultimately, Emily is hopeful that Sign Language will become embraced, celebrated, and recognised as equal to the other official languages in South Africa.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept