Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Peet Jacobs.

Peet Jacobs is no stranger to the Deaf community in and around the UFS and Bloemfontein. He has been working at the University of the Free State (UFS) for the past six years, and he is still amazed at the amount of support our institution provides to Deaf students in particular, and to South African Sign Language (SASL) in general. “They provide excellent interpreting services,” Peet says, “not only in face-to-face classes, but also on different online platforms, as well as interpreting pre-recorded lectures and videos.” And as a SASL interpreter, Peet is an integral part of this service. 

But signing is not merely a day job for Peet. He carries his skill into the community in his spare time, where he assists as an interpreter at hospitals, doctors’ rooms, and psychiatrists’ offices – to name but a few. What gives Peet the deepest satisfaction, however, is when he can combine his love of Sign Language with his love of the Bible and his God. It was actually Peet’s devotion to his religion that inspired him to learn Sign Language in order to enable him to carry the Word of God into the Deaf community. Peet now also presents Bible courses in SASL and assists a non-profit organisation to produce SASL Bible-based publications, which are translated and recorded in video format. 

Peet aspires to become an authority on SASL subject-specific vocabulary related to subject in higher education. “Sign Language is a language in its own right,” Peet points out. “The uniqueness of Deaf culture and the variety of dialects within SASL give the language diversity and colour.” Peet goes on to emphasise how important it is that SASL is recognised as an official language in our country. “This recognition will give dignity to a group of people who have been marginalised in South Africa. This will also pave the way to providing more inclusivity and service to the Deaf community.”

Until then, Peet will continue to serve the best way he knows how: through signing.

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept