Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 September 2021 | Story Michelle Nöthling | Photo Supplied
Simoné du Preez


“A community needs a culture, and a culture needs a language.” Pause a moment and consider these words of Simoné du Preez. 

How do we express our beliefs, values, customs, and norms, if not through language? The same is true for the Deaf – who are a minority cultural group in its own right. “Sign Language is the language in which the Deaf community laughs, cries, learns, and loves,” Simoné, a South African Sign Language (SASL) interpreter at the University of the Free State (UFS), points out. “Without it, no expression – and no cultural expression – can take place.”

Simoné’s passion for SASL was ignited while studying BA Language Practice at the UFS. Taking SASL as a main subject, she fell in love with the language, the culture, the history, and its people. Simoné then went on to do her honour’s degree in Language Practice, with specialisation in SASL Interpreting, and she never looked back. During her seven years as an interpreter at the UFS, Simoné still feels humbled by the student community she serves. “I get to learn so much from students from every walk of life, studying anything from Education to the Arts to Actuarial Sciences.” She enjoys seeing what Deaf students are capable of and is also “proud to be a part of their success stories.”

She not only has a soft spot for our students, but also for the Department of SASL and Deaf Studies that has helped shape her into the interpreter she is today. Simoné adds that she loves working with the Centre for Universal Access and Disability Support (CUADS). “It’s amazing to see what lengths Martie Miranda and her team are willing to go through in order to achieve equity and equality for our students with disabilities. I am humbled and honoured to be able to play a small role in their big plan.”

Always pushing herself to improve, Simoné has now set herself the goal of becoming a SASL interpreter accredited by the South African Translators’ Institute (SATI). It is immensely important for Simoné that the Deaf community has access to all information at all times – equal to that of a hearing person. The recognition of SASL as an official language in South Africa is vital to actualising this. Simoné underscores the fact that without this recognition, the Deaf are being silenced. “Their voices are just as important as every other person’s. It is time that we listen to what the Deaf community has to say.”


News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept