Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2021 | Story Leonie Bolleurs | Photo Supplied
Frans Koning recently obtained a CERA accredited enterprise risk management (ERM) qualification from the Actuarial Society of South Africa.

“If you fail to plan, then you plan to fail.”

“During and after planning, ensure that you identify all risks, since it would be the risks that you did not identify that might sink you.” 

These are two of the beliefs of Frans Koning, Senior Lecturer and Head of the Department of Mathematical Statistics and Actuarial Science at the University of the Free State (UFS), whose outputs in life – whether as lecturer or risk manager – are about planning. 

Koning, a qualified actuary with an interest in corporate governance, has been investing in his growth and development for the past three years by enrolling and obtaining an enterprise risk management (ERM) qualification from the Actuarial Society of South Africa, which is a member of the CERA Global Association (CGA). Having a Chartered Enterprise Risk Actuary (CERA) credential means that he worked through a world-class curriculum that is recognised globally and transferable internationally. This qualification gives professionals greater exposure to the C-suite and leadership, while empowering them to become a more highly valued resource for a company. 

Pulling out all the stops

CGA describes itself as a body that provides accredited risk professionals with strong ERM knowledge to drive better business decisions in finance and insurance. It associates characteristics such as professionalism, ethics and trust, impeccable standards and integrity with students who have obtained the CERA credential. “These professionals can communicate ideas effectively with leadership and is qualified to play varying roles within an organisation, from risk manager to chief risk officer and more,” it states. 

He had to pull out all the stops to obtain this qualification. “This was about 400 hours of study; and absolutely worth it. Since it was very interesting, I did not consider it hard work,” says Koning, who believes in a positive outlook on life. “I have never seen a successful pessimist,” he says. 

This qualification enables him to add extra value in the classroom, teaching Risk Management. Discussing hard questions in class, linking it to practice, i.e., modelling COVID-19 and discussing its effect on life insurance, is what he loves about this profession. He misses student interaction in the classroom, saying that interaction and discussions are not the same with a Blackboard/Teams/Zoom meeting.

A multitude of opportunities 

Koning, who has been with the university since 2003, believes his motivation of students makes a difference in their lives. “Teaching students and seeing them grow into actuaries and chief executive officers of companies gives me great satisfaction,” he states.

He lectures Life Contingencies, which is about calculating life insurance premiums and reserves, as well as Asset and Liability Management, which teaches students about managing the liabilities arising from selling insurance and managing the assets backing these. 

Teaching students and seeing them grow into actuaries and chief executive officers of companies gives me great satisfaction. – Frans Koning

 

As an independent non-executive director (NED) at African Unity Life (Ltd), he also chairs the risk committee and serves as a member of the audit committee. Koning is of the opinion that this qualification will be useful in more board positions than NED. This is but one of his options. According to him, there are a multitude of opportunities in the private sector, as all entities manage risk.

“I also intend to do some research in the space of enterprise risk management, something which I enjoy,” he adds. 

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept