Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 September 2021 | Story Leonie Bolleurs | Photo Supplied
Frans Koning recently obtained a CERA accredited enterprise risk management (ERM) qualification from the Actuarial Society of South Africa.

“If you fail to plan, then you plan to fail.”

“During and after planning, ensure that you identify all risks, since it would be the risks that you did not identify that might sink you.” 

These are two of the beliefs of Frans Koning, Senior Lecturer and Head of the Department of Mathematical Statistics and Actuarial Science at the University of the Free State (UFS), whose outputs in life – whether as lecturer or risk manager – are about planning. 

Koning, a qualified actuary with an interest in corporate governance, has been investing in his growth and development for the past three years by enrolling and obtaining an enterprise risk management (ERM) qualification from the Actuarial Society of South Africa, which is a member of the CERA Global Association (CGA). Having a Chartered Enterprise Risk Actuary (CERA) credential means that he worked through a world-class curriculum that is recognised globally and transferable internationally. This qualification gives professionals greater exposure to the C-suite and leadership, while empowering them to become a more highly valued resource for a company. 

Pulling out all the stops

CGA describes itself as a body that provides accredited risk professionals with strong ERM knowledge to drive better business decisions in finance and insurance. It associates characteristics such as professionalism, ethics and trust, impeccable standards and integrity with students who have obtained the CERA credential. “These professionals can communicate ideas effectively with leadership and is qualified to play varying roles within an organisation, from risk manager to chief risk officer and more,” it states. 

He had to pull out all the stops to obtain this qualification. “This was about 400 hours of study; and absolutely worth it. Since it was very interesting, I did not consider it hard work,” says Koning, who believes in a positive outlook on life. “I have never seen a successful pessimist,” he says. 

This qualification enables him to add extra value in the classroom, teaching Risk Management. Discussing hard questions in class, linking it to practice, i.e., modelling COVID-19 and discussing its effect on life insurance, is what he loves about this profession. He misses student interaction in the classroom, saying that interaction and discussions are not the same with a Blackboard/Teams/Zoom meeting.

A multitude of opportunities 

Koning, who has been with the university since 2003, believes his motivation of students makes a difference in their lives. “Teaching students and seeing them grow into actuaries and chief executive officers of companies gives me great satisfaction,” he states.

He lectures Life Contingencies, which is about calculating life insurance premiums and reserves, as well as Asset and Liability Management, which teaches students about managing the liabilities arising from selling insurance and managing the assets backing these. 

Teaching students and seeing them grow into actuaries and chief executive officers of companies gives me great satisfaction. – Frans Koning

 

As an independent non-executive director (NED) at African Unity Life (Ltd), he also chairs the risk committee and serves as a member of the audit committee. Koning is of the opinion that this qualification will be useful in more board positions than NED. This is but one of his options. According to him, there are a multitude of opportunities in the private sector, as all entities manage risk.

“I also intend to do some research in the space of enterprise risk management, something which I enjoy,” he adds. 

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept