Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2021 | Story Jóhann Thormählen | Photo Charl Devenish
The University of the Free State (UFS) netball team was honoured by UFS management at a special celebration. The side won a fourth Varsity Netball title and the UFS has now been champion in 2013, 2014, 2018 and 2021.

Set goals for yourself, commit to it, and give everything to achieve them.

According to Prof Francis Petersen, Rector and Vice-Chancellor of the University of the Free State (UFS), this is what the UFS netball team did and why it is an example for the Kovsie community.

He celebrated the team’s achievement of winning Varsity Netball for a record fourth time and extending the run of the UFS as the most successful team in the tournament.

The Kovsies convincingly beat Maties 55-39 in the final to be crowned champions. It was the biggest victory margin in a final, and they did it after losing to Maties (46-54) in the first round.

Prof Petersen and his management group honoured Burta de Kock, the UFS Head Coach, and her team during a special celebration on 13 September 2021.

Working as an outfit

He said the side’s determination is a lesson to others.

“Once you have decided that these are my objectives and you commit yourself to achieving them, that is all you focus on.”

“It will always be possible if you put everything in and you showed it. Thank you for doing this.”

He praised the team for building the UFS brand. 

“You really work as an outfit. What I saw of the players was a right attitude when they play the game.”

Everything made easy

Sikholiwe (Sne) Mdletshe, the UFS captain, thanked her team’s management, the UFS, and its lecturers.

“We really want to thank the university for putting so much into us. It gives us a lot of resources.

“Some tests had to be written while we were in the bubble and our lecturers made that easy for us.”

She said the players never take the effort for granted. “The UFS makes everything easy to go out there and play netball – the sport we have been playing since we were little kids.”

DB Prinsloo, Director of KovsieSport, is immensely proud of the team.

“We even lost one of our best players in the first match, Chanel Vrey, due to injury. We have to take off our hats to the Kovsie netball team.”


News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept