Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 September 2021 | Story Ruan Bruwer | Photo Varsity Sports
Thabo Lesibe, captain of the UFS team, on his way to score the winning goal against Tuks in the semi-final of Varsity Football.


To finish his very last match for the Kovsies as the winning captain of Varsity Football would mean the world to him, says Thabo Lesibe.

The University of the Free State (UFS) men’s team reached the final of Varsity Football for the very first time. They will face the University of Johannesburg (UJ) in Pretoria on Monday, 4 October 2021. The match gets underway at 19:15.

The UFS booked their spot in the final thanks to a 2-1 victory over Tuks in Tuesday’s semi-final.

“It would certainly be the cherry on the cake and the best possible way for me to bow out,” Lesibe said. He is in his final year of study for a Bachelor of Laws, which he started in 2015. Lesibe was responsible for scoring the winning goal from a penalty against Tuks. 

On their way to the semi-finals, Kovsies also defeated the University of KwaZulu-Natal, Tuks, and Wits and drew against the North-West University (NWU), Tshwane University of Technology, and the Vaal University of Technology. Their only loss was against UJ (0-1).

“It feels amazing to reach the final. We are all very excited. There is a strong unity in the camp and a common belief. We are playing for something far greater than the eye can see,” the captain said.

According to Lesibe, the pain of 2019 has been a motivator for them in 2021. In the 2019 Varsity Football competition, Kovsies and NWU finished level on log points and with the same goal difference, but NWU progressed to the semis courtesy of scoring nine goals to the UFS’s eight in the group stage.

“When it gets tough on the playing field, we remind ourselves of that disappointment which propelled us, as we did not want to experience that pain again.”

Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, congratulated the team on a successful Varsity Football season. 
“This is a great achievement for the team as well as for the university. You have shown once again that the University of the Free State is home to top sports stars. Following the victory of our Kovsie Netball team, we look forward to adding another title to our sporting achievements this year.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept