Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 September 2021 | Story Ruan Bruwer | Photo Varsity Sports
Thabo Lesibe, captain of the UFS team, on his way to score the winning goal against Tuks in the semi-final of Varsity Football.


To finish his very last match for the Kovsies as the winning captain of Varsity Football would mean the world to him, says Thabo Lesibe.

The University of the Free State (UFS) men’s team reached the final of Varsity Football for the very first time. They will face the University of Johannesburg (UJ) in Pretoria on Monday, 4 October 2021. The match gets underway at 19:15.

The UFS booked their spot in the final thanks to a 2-1 victory over Tuks in Tuesday’s semi-final.

“It would certainly be the cherry on the cake and the best possible way for me to bow out,” Lesibe said. He is in his final year of study for a Bachelor of Laws, which he started in 2015. Lesibe was responsible for scoring the winning goal from a penalty against Tuks. 

On their way to the semi-finals, Kovsies also defeated the University of KwaZulu-Natal, Tuks, and Wits and drew against the North-West University (NWU), Tshwane University of Technology, and the Vaal University of Technology. Their only loss was against UJ (0-1).

“It feels amazing to reach the final. We are all very excited. There is a strong unity in the camp and a common belief. We are playing for something far greater than the eye can see,” the captain said.

According to Lesibe, the pain of 2019 has been a motivator for them in 2021. In the 2019 Varsity Football competition, Kovsies and NWU finished level on log points and with the same goal difference, but NWU progressed to the semis courtesy of scoring nine goals to the UFS’s eight in the group stage.

“When it gets tough on the playing field, we remind ourselves of that disappointment which propelled us, as we did not want to experience that pain again.”

Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, congratulated the team on a successful Varsity Football season. 
“This is a great achievement for the team as well as for the university. You have shown once again that the University of the Free State is home to top sports stars. Following the victory of our Kovsie Netball team, we look forward to adding another title to our sporting achievements this year.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept