Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 September 2021 | Story Dr Nitha Ramnath
Prof Bonang Mohale.


The executive management of the University of the Free State (UFS) and the university community extend heartfelt congratulations to Prof Bonang Mohale on his appointment as President of Business Unity South Africa (BUSA). 

“Prof Mohale’s extensive expertise and experience in leadership roles, contributions to the growth of many multinational companies, and involvement in education and the business sector, will undoubtedly strengthen the ties between various sectors and civil society, and further contribute to the stabilisation and growth of South Africa,” said Prof Francis Petersen, UFS Rector and Vice-Chancellor, in his congratulatory letter to Prof Mohale. 

BUSA’s role in influencing policy and legislative development for inclusive growth and employment, and in building an enabling environment for the creation of a vibrant, diverse, and globally competitive economy that harnesses the economic and human potential in South Africa, is well documented. This potential resides in our higher education institutions in the form of our students, future graduates, and graduates who are the building blocks for the development of South Africa. 

At a time when our country is facing a social and economic crisis, we are confident that BUSA will consider the perspectives across sectors with a view to creating partnerships, collaboration, and co-creation and further play an integral role in our higher education institutions for the benefit of our students. 

“Prof Mohale’s support to the UFS is appreciated, especially his role as Chancellor and his contribution towards our Thought-Leader and Global Citizen programmes, through which important national and global issues are addressed.
 
We wish Prof Mohale every success in his endeavours, particularly as President of BUSA,” said Prof Petersen.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept