Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Kesa and Wayde biggest stars at KovsieSport Awards
2017-10-03

Description: 'Awards KovsieSport 2017 Tags: Awards KovsieSport 2017

Wayde van Niekerk was unable to attend the KovsieSport Awards.
Steven Swarts, his stepfather, received the award for KovsieSport
Senior Sportsman of the Year from Prof Francis Petersen (left),
Rector and Vice-Chancellor of the University of the Free State,
on his behalf.
Photo: Mlungisi Louw/Volksblad


It took Kesa Molotsane seven years of hard work and patience to excel, and all this time she has been a Kovsie. Unlike some other sporting greats, success didn’t come overnight for her. 

The star athlete had an amazing year and was crowned KovsieSport Senior Sportswoman of the Year, while Wayde van Niekerk is the KovsieSport Senior Sportsman of the Year for a fifth consecutive time. The 400 m Olympic Champion surpassed the record held by himself and Franz Kruger for most successive sports awards for men (four), and equalled Kruger’s record (five) for the most men’s titles overall.

Blose and Chawane top juniors

The cream of the crop was honoured at the KovsieSport Awards, held in collaboration with the Volksblad Free State Sport Stars Awards, at Monte Bello in Bloemfontein on 27 September 2017.

Kwenzo Blose, who represented the South African U20 rugby team at the Junior World Cup, was named Junior Sportsman for a second consecutive year. The netball player Khanyisa Chawane is the KovsieSport Junior Sportswoman of the Year. She captained the South African U21 netball team at the World Youth Netball Champs.

The blind athlete Louzanne Coetzee and her guide Khothatso Mokone received a Special Award for Disabled Sport. Coetzee took part in the Paralympic Games and has set many records, such as in the 5 000 m (T11).

Hard work over many years

Molotsane competed at the World Cross-country Championships in Kampala, is the leader of the Spar Women’s Grand Prix 10 km series, and represented South Africa at the World Student Games. The Assistant Officer at KovsieSport says being the best female athlete is humbling. 

“It took me long enough to get here and it needed a lot of work from my side over many years. I have been with Kovsies for, like, seven years and I am only getting this after so long.”
She also commended Karla and Tanya Mostert who was nominated with her. “Karla has been a motivation for little kids from primary school up until high school learners. She has always been there and knows what it means to really be a sport star. 

“And her younger sister Tanya is the upcoming one. It is amazing to be on stage with both of them.”

KovsieSport Awards:
Participants in World Student Games in Tapei: Arné Nel (tennis), Hendrik Maartens (athletics), Janke van der Vyver (badminton), Kesa Molotsane (athletics), Lienke de Kock (tennis), Maryke Brits (athletics), Rynardt van Rensburg (athletics), Tsepang Sello (athletics).
Special Award for Disabled Sport: Louzanne Coetzee and Khothatso Mokone
Special Awards: Maryka Holtzhausen (netball), Janine de Kock, Marnus Kleinhans (tennis), Ans Botha, Rufus Botha (both athletics), Nicole Walraven (hockey) and Godfrey Tenoff (soccer)
Junior Sportswoman of the Year: Khanyisa Chawane (netball)
Junior Sportsman of the Year: Kwenzo Blose (rugby)
Senior Sportswoman of the Year: Kesa Molotsane (athletics)
Senior Sportsman of the Year: Wayde van Niekerk (athletics)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept