Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Africa the birthplace of mathematics, says Prof Atangana
2017-11-17


 Description: Prof Abdon Atangana, African Award of Applied Mathematics  Tags: Prof Abdon Atangana, African Award of Applied Mathematics

Prof Abdon Atangana from the UFS Institute for Groundwater Studies.
Photo: Supplied

 

Prof Abdon Atangana from the Institute for Groundwater Studies at the University of the Free State recently received the African Award of Applied Mathematics during the International conference "African’s Days of Applied Mathematics" that was held in Errachidia, Morocco. Prof Atangana delivered the opening speech with the title "Africa was a temple of knowledge before: What happened?” The focus of the conference was to offer a forum for the promotion of mathematics and its applications in African countries.

When Europeans first came to Africa, they considered the architecture to be disorganised and thus primitive. It never occurred to them that Africans might have been using a form of mathematics that they hadn’t even discovered yet.

Africa is home to the world’s earliest known use of measuring and calculation. Thousands of years ago Africans were using numerals, algebra and geometry in daily life. “Our continent is the birthplace of both basic and advanced mathematics,” said Prof Atangana. 

Africa attracted a series of immigrants who spread knowledge from this continent to the rest of the world.

Measuring and counting
In one of his examples of African mathematics knowledge Prof Atangana referred to the oldest mathematical instrument as the Lebombo bone, a baboon fibula used as a measuring instrument, which was named after the Lebombo Mountains of Swaziland. The world’s oldest evidence of advanced mathematics was also a baboon fibula that was discovered in present-day Democratic Republic of Congo.

Another example he used is the manuscripts in the libraries of the Sankoré University, one of the world’s oldest tertiary institutions. This university in Timbuktu, Mali, is full of manuscripts mainly written in Ajami in the 1200s AD. “When Europeans and Western Asians began visiting and colonising Mali between the 1300s and 1800s, Malians hid the manuscripts in basements, attics and underground, fearing destruction or theft by foreigners. This was certainly a good idea, given the Europeans' history of destroying texts in Kemet and other areas of the continent. Many of the scripts were mathematical and astronomical in nature. In recent years, as many as 700 000 scripts have been rediscovered and attest to the continuous knowledge of advanced mathematics and science in Africa well before European colonisation. 

Fractal geometry

“One of Africa’s major achievements was the advanced knowledge of fractal geometry. This knowledge is found in a wide aspect of Africa life: from art, social design structures, architecture, to games, trade and divination systems. 

“The binary numeral system was also widely known through Africa before it was known throughout much of the world. There is a theory that it could have influenced Western geometry, which led to the development of digital computers,” he said. 

“Can Africa rise again?” Prof Atangana believes it can.

He concluded with a plea to fellow African researchers to do research that will build towards a new Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept