Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Council concerned over health crisis
2009-06-08

The Council of the University of the Free State (UFS) has come out in support of doctors and health professionals attached to its Faculty of Health Sciences who expressed their concerns about the health crisis in the Free State.

At its meeting on Friday, 5 June 2009 the Council said it shared the concerns of health professionals that the quality of patient care and the quality of training being provided at the health faculties across the country are being compromised.

Earlier last week doctors and other health professionals of the UFS Faculty of Health Sciences issued a statement highlighting the seriousness of the crisis in health care provision in the Free State Province, warning that the system was on the verge of collapse.

According to the Council of the UFS, a petition will be addressed to the Minister of Health and the Minister of Education calling for urgent steps to be taken to correct the deteriorating situation in the province’s health care system.

In other decisions, the UFS Council also decided to confer an honorary doctorate on Judge Louis Harms, the Deputy President of the Supreme Court of Appeal in Bloemfontein.

Judge Harms is an international specialist in the field of Intellectual Property Law and has been actively involved in legislation and international agreements on intellectual property law, including the Designs Act, Trademarks Act and Patents and Copyrights Acts.

The motivation quotes one of his fellow jurists as saying that: “Harms is one of the greatest South African lawyers of the last 50 years. He is an intellectual giant who has made an impressive and profound contribution to the development of South African law: He is erudite, visionary, astute and principled.”

An honorary doctorate will also be conferred on geologist and expert on the geology of the Karoo Supergroup, Mr Johan Loock, for his distinguished efforts towards promoting the earth sciences and specifically geology, particularly in the context of the Free State.

Mr Loock has had two Karoo fossils named after him, which is a particular honour in the scientific world of palaeontology. He was employed by the UFS for 32 years and has close ties with the Free State in terms of his wide field of research interests.

The motivation further states that “the man affectionately and respectfully known as Oom Loock, or Malome, has selflessly given of his vast knowledge, expertise and insights into the physical and cultural heritage of the Free State to all who would learn from, and with, him”.

A Council Medal will be awarded to Prof. Johan Grobbelaar from the Department of Plant Sciences at the UFS. During his time at the UFS he has been a pioneer in many areas, including the first research expedition to Marion Island, the first PhD about research on Marion Island, the establishment of the Institute of Environmental Sciences as well as the establishment of the Centre for Environmental Management.

Council also decided to refer a report from the iGubu consultants regarding aspects of diversity in student residences to the Executive Committee of the Council so that the benefit of the participation of the rector-designate Prof Jonathan Jansen could be obtained and for further participation and consultation with relevant stakeholders.

In another decision the Council also extended the term of appointment of Prof. Tienie Crous as Dean: Economic and Management Sciences for an additional term of five years.

The Council furthermore appointed Prof. Hugh Patterton as the director of the strategic academic cluster dealing with advanced biomolecular research and Prof. Wijnand Swart as Director of the strategic academic cluster dealing with technologies for sustainable crop industries in semi-arid regions.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept