Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

UFS School of Nursing opens new frontiers at 40
2009-11-16

The opening of the virtual facility of the School of Nursing at the University of the Free State (UFS) and a gala dinner to celebrate the School’s 40th year of existence took place on the Main Campus in Bloemfontein this week. At the opening were, among others, from the left: Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS; Dr Oluseyi Oyedele and Ms Viona Munjeri, both from The Atlantic Philanthropies; and Prof. Anita van der Merwe, Head of the School of Nursing at the UFS.
Photo: Leatitia Pienaar

All eyes in the nursing profession in South Africa were turned to the University of the Free State (UFS) when the School of Nursing opened a state-of-the-art virtual health training and learning facility and celebrated its 40th year of existence with a gala dinner on the Main Campus in Bloemfontein this week.

The lustrous events were attended by dignitaries from all spheres of the health-care fraternity in South Africa.

The new virtual facility, The Space, is made possible by a grant of R16 million from The Atlantic Philanthropies and R1 million from the UFS. The Atlantic Philanthropies organisation is an international philanthropic organisation that is going to inject R70 million into nursing in South African over the next four years. The initiative will enhance nursing education and step up the quality of health-care delivery in South Africa. Four major grants were made to universities in South Africa, of which the UFS is one.

With the facility at the UFS School of Nursing, nursing education is propelled into the future. Prof. Anita van der Merwe, Head of the School of Nursing, says, “The virtual learning facility is a very new way of thinking and teaching. At the moment, theory and practice are separated, as theory is often taught in the mornings, followed by practical settings later in the day. Learner nurses then also go to clinical facilities for their practicals where the quality of care is declining and human resources are a problem.

“We believe that with new technologies such as e-learning and high-tech computer-mediated equipment we can use the ‘virtual world’ to bridge the theory-practice gap in the same location.”

Prof. Van der Merwe says the project is essentially about transformation: taking a stand against stagnation in nursing education and practice and daring to be different.

In the new virtual facility nurses will have the best of three worlds – the expertise of the facilitator/educator, simulation technology, and a vast selection of on-line and off-line software, exposing them to blogs, broadcasting and enhancing computer literacy. This will attract both the new “millennial” generation, which tends to be technologically competent, as well as the older learner because of the unthreatening learning environment.

The core space will accommodate 40 to 60 students and is designed to encourage informal, collaborative learning and practice simultaneously. It will have a demarcated area for “patients” (such as advanced adult and baby patient simulators) and a “clinic space” allowing for role play.

At the gala dinner, Prof. Jonathan Jansen, Rector and Vice-Chancellor of the UFS commended nurses in South Africa for their caring role, but also expressed his concern that South African has lost its deep sense of care. South Africa is at a critical point and the country can be changed if a deep sense of care can be embedded again.

About forty nursing educators from all over South Africa attended an exploratory workshop in the facility today and the last meeting of the Forum of University Deans in South Africa (FUNDISA) also coincided with the festivities at the School of Nursing.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 November 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept