Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Miss Deaf SA inspires UFS teachers with her life story
2009-11-26

Pictured from the left, are: K. Botshelo, Vickey Fourie (Miss Deaf SA) and A. Morake.

Vicki Fourie, Miss Deaf SA 2009 and Miss Deaf HESC, recently visited the University of the Free State to motivate aspiring Foundation Phase teachers by sharing her life story with them.

When Vicki was two years old, her parents found out that she couldn’t speak. Two possible explanations were that she had had an ear infection or speech problems. They took her to a specialist and after a brain scan they found out that Vicki had 97% hearing loss in both ears.

Hearing aids were required and Vicki’s father, Pastor Gerhard Fourie from the Christian Revival Church (CRC) enrolled her in a kindergarten school for deaf children, Carel Du Toit in Cape Town.

However, even though Carel Du Toit’s slogan is ‘Where Deaf Children Learn to Speak’, it was because of her mother’s efforts that Vicki is able to communicate effectively with hearing people today.

Bonita Fourie would sit with her child every single day and teach her how to pronounce words phonetically and how to read lips. It is because of that that Vicki is not dependent on sign language at all.

When she was seven years old, her parents enrolled her in an English A.C.E. school. Even though Vicki’s home language is Afrikaans, her parents decided to go against the norm by placing her in an English school (most deaf/hard of hearing people cannot learn a second language). Today Vicki is fluent in both languages.

“I used to think that my hearing aids are just a normal thing you put on, like using glasses for reading,” she said. “I still think that way. People always come up to me and say, ‘It’s amazing how easily you adapt to hearing people. You have no stumbling blocks or holdbacks.’

“To me it’s interesting because my reaction is always this: ‘God gave me this situation, and I have made the best of it. I’ve overcome it, and therefore I can go forward in life’. We were born not to survive, but to thrive. I detest the attitude of, ‘I’m a victim, so the world owes me something’. The world owes nobody anything! We can be victorious over our own circumstances. It is possible. My name’s meaning is testifies to this: “Vicki” comes from the word “Victory”. I was meant to be victorious, and not a victim.”

Vicki, who is now 20, has achieved so much in life. She did ballet, hip-hop, modern dancing, drama (she even went to America for her dramatic monologue and poetry recitation), and she has published over 70 magazine articles, nationally and internationally. Her dreams are to write books one day, become a TV presenter, and motivate and inspire people all over South Africa through public speaking.

When one hears this story, one cannot help but be surprised by her success. It makes you realize that anything is possible when you see the potential in a child, and then do everything in your power to develop it and draw it out. When you believe in the child that you are educating, that child will sense it and blossom like a flower.

“Courage isn’t a gift, it is a decision,” Vicki said. “There will always be things that try to hold you back. The key to working with any child is to be patient, patient, and patient! Teachers play a huge role in equipping children for the future. It is a big responsibility, but it can be done.”
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept