Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

UFS receives research grant focusing on enablement of non-profit organisations
2011-01-20

 
Prof. Mabel Erasmus

The University of the Free State (UFS) has received a research grant to the value of R1,1 million from the National Research Foundation (NRF) to conduct research on community engagement, with the emphasis on knowledge as enablement – a Non-Profit Organisation (NPO) focus.

This was the first time the NRF had requested applications for research with a focus on community engagement (CE). With the grant, the UFS has become one of the first recipients of a research grant that focuses on community engagement.

The overarching research question that will be dealt with is how Higher Education Institutions (HEI) and the NPO sector can establish long-term, research-based collaborative engagements that will be mutually empowering and enabling through joint, reciprocal knowledge-based activities and capacity building.

The contention that this proposal is based on, is that HEIs have limited knowledge of the NPO sector and thus are unable to be fully responsive to the challenges that NPOs face. What is more, it is very likely that staff and students from HEIs do not have an adequate grasp of the experiential understanding, contextual community knowledge and practical know-how that NPO practitioners have, and hence do not appreciate the crucial contributions that they can make with regard to meaning-making processes aimed at improving some of the harsh South African realities.

According to Prof. Mabel Erasmus, Associate Professor and Head of the university’s Division: Service Learning, which submitted the research proposal to the NRF and is the grant-holder, the university would like the information generated by the research to be beneficial to both HEIs and the NPOs. “Knowledge regarding NPOs, specifically their challenges and information about what they are doing, will be invaluable to HEIs. At the same time, the research must benefit the NPOs with knowledge to improve their practice and strengthen their functioning.

“The research will take place in close collaboration with the NPOs, as their inputs are crucial. The research will thus not be ‘about’ them but ‘with’ them.”

“We do not want to send our students for community-based education or as volunteers to NPOs year after year and it does not mean as much to them as these organisations would hope for. With the research process we would like to strengthen NPOs, to build their capacity and give them our whole-hearted cooperation,” she said.

Funding received from the grant will be applied over a period of three years. Except for the study grants for five Ph.D. students and four master’s students, the grant will further make provision for a number of workshops, a local conference, a publication and presentations at international conferences on this matter. The research team of 22 persons includes academics from other HEIs such as the Central University of Technology, University of Zululand, University of Johannesburg and Monash SA. Several staff members of NPOs also form part of the team, including REACH (Bfn), Childline (FS) and others.

Prof. Erasmus said that the UFS was one of a few institutions that were currently conducting research to this extent on the link between the NPO sector and HEIs within the field of community engagement.
 

Media Release
18 January 2011
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept