Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Dialogue between Science and Society series looks at forgiveness and reconciliation
2013-03-24

 

Taking part in the discussion on forgiveness and living reconciliation, were from left: Olga Macingwane, a survivor of the Worcester bombing of 1993; Dr Juliet Rogers, a Scholar on Remorse from the University of Melbourne in Australia and Dr Deon Snyman, Chairperson of the Worcester Hope and Reconciliation Process.
Photo: Mandi Bezuidenhout
24 March 2013

How do you, as a mother who lost her only daughter, forgive the man who claimed responsibility for the attack that killed her?  How do you forget his crime while travelling with him across the world?  

These were some of the questions posed to Jeanette Fourie at a Dialogue between Science and Society series on forgiveness and living reconciliation. Jeanette, whose daughter Lyndi was killed in an attack on the Heidelberg Pub in Cape Town in 1993, was one of three people telling their stories of forgiveness while dealing with traumatic experiences. 

Sitting next to Letlapa Mphahlele, the man who owned up to the attack that killed her daughter, Jeanette spoke about their story of forgiveness traveling the world together, spreading the message of forgiveness and conciliation. 

"Don't ever think you can forget, because that’s not possible. What you do with the pain is to find peace, and that's what forgiveness does. Forgiveness allows you to stop all the dialogue in your head on why he did it. You don't forget, you confront it and you deal with it." 

Letlapa, Director of Operations of Apla, the military wing of the PAC at the time of Lyndi's death, spoke about dealing with the response to his crime. "Sometimes you wish that you were not forgiven, because now you have the great burden of proving that you are worthy of forgiveness."

Also telling her story of forgiveness was Olga Macingwane, a survivor of the Worcester bombing of 1993 in which four people were killed and sixty-seven others injured. Four people were sent to prison. In 2009 Olga met one of the perpetrators, Stefaans Coetzee, and what came out of that meeting, is her story. 

"When I met Stefaans I was very angry, but when you sit down with somebody and listen to him or her, you find out what the reasons were that made him or her do something. I can say that I forgave him." 

Facilitating the conversation, Prof Pumla Gobodo-Madikizela, Senior Research Professor on Trauma, Forgiveness and Reconciliation, said the seminar was meant to get in touch with the truth that forgiveness is possible. 

"Before we had the Truth and Reconciliation Commission (TRC) in South Africa, the experts always said that forgiveness was not possible in these stories of the past. And then the TRC came into life as a response to mass atrocities. For the first time in the history of these traumatic experiences, of political traumas, we witness something that we have never seen.  Even us on the TRC, although it was framed as reconciliation, we never imagined there would actually be stories of forgiveness emerging out of that process, and then we witness that this too is possible." 

Others who took part in the two-hour-long seminar, were Dr Juliet Rogers, a Scholar on Remorse from the University of Melbourne in Australia and Dr Deon Snyman, Chairperson of the Worcester Hope and Reconciliation Process. They spoke about the dynamics behind the processes of engagement between victims/ survivors and perpetrators. 

The Dialogue between Science and Society series was co-hosted by the Institute for Reconciliation and Social Justice. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept