Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

SASOL TRAC laboratory launched at UFS Qwaqwa Campus
2006-05-08

Some of the guests attending the launch of the Sasol TRAC Laboratory at the University of the Free State's (UFS) Qwaqwa Campus were from the left Prof Peter Mbati (Principal of the Qwaqwa Campus), Mrs Zimbini Zwane ( Communications Manager of Sasol Infrachem), Prof Gerhardt  de Klerk (Dean : UFS Faculty of the Humanities), Prof Fred Hugo
 Director of TRAC SA) and Prof Jack van der Linde (Director of RIEP at the UFS).

SASOL TRAC laboratory launched at UFS Qwaqwa Campus

The Research Institute for Education Planning (RIEP) of the University of the Free State (UFS) today unveiled the Sasol TRAC Laboratory at its Qwaqwa campus.

The laboratory will be used to help grade 10, 11 and 12 learners and educators from the Qwaqwa region to conduct the experiments from the physical sciences outcome-based curriculum.

“The Sasol TRAC Laboratory introduces learners not only to the latest technology used by engineers and other scientists in practice but also to stimulate the learner’s interest in the field of science in such a way that more of them will enter into science related careers,” says Mr Cobus van Breda, Co-ordinator of the TRAC Free State Regional Centre.

According to Mr van Breda the newly established Sasol TRAC Laboratory will enable RIEP to train learners and their educators in Physical Sciences.  The laboratory will consist of six work stations equipped with computers and electronic sensors.

“Learners from the Qwaqwa region will visit the Sasol TRAC Laboratory on regular basis to conduct experiments based on the curriculum.  Data will be collected with electronic apparatus and presented as graphs on the computer so that results can be analysed and interpreted,” says Mr van Breda.

“There is a serious shortage of suitable qualified teachers in maths and science in the Qwaqwa region.  Many schools in the region are not yet part of the RIEP project and are in dire need of assistance.  A large number of these schools are in remote areas not reached regularly by intervention programmes,” says Prof Peter Mbati, Principal of the UFS Qwaqwa Campus.

“The establishment of the Sasol TRAC Laboratory at the Qwaqwa Campus provides us the opportunity to engage with our community and assist in the development and training of these vital education subjects.  We are pleased that Sasol agreed to fund the project,” says Prof Mbati.

Students from the Qwaqwa Campus will also benefit from the TRAC programme.   “Some promising students will also undergo further training and become assistants for the TRAC programme,” says Prof Mbati. 

“Nurturing science and mathematical skills is of great importance in growing our national economy. Annually, Sasol invests more than R50 million in supporting mathematical and science education in South Africa. Our primary aim is to increase the number of learners gaining access to tertiary education in the science fields. Therefore, our Corporate Social Investment (CSI) education interventions at secondary school level focus on educator development and direct learner interventions such as the Sasol TRAC Laboratory,” explains Ms Pamilla Mudhray, CSI and SHARP manager at Sasol.

According to Ms Mudhray the implementation of the National Curriculum Statement for physical sciences in the further education and training (FET) phase from 2006, under resourced schools will need greater access to the tools and equipment necessary to teach the syllabus and fulfil the ideals of the curriculum.

TRAC South Africa is a national non-profit programme focused on supporting and expanding science, mathematics and technology education in secondary schools. The programme was first introduced to South Africa in 1994. In 2005, RIEP established the TRAC Free State regional centre on the UFS Main Campus in Bloemfontein.

Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
5 May 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept