Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

UFS research sheds light on service delivery protests in South Africa
2015-01-23

UFS research sheds light on service delivery protests in South Africa

Service delivery protests in the country have peaked during 2014, with 176 major service delivery protests staged against local government across South Africa.

A study by the University of the Free State (UFS) found that many of these protests are led by individuals who previously held key positions within the ANC and prominent community leaders. Many of these protests involved violence, and the destruction had a devastating impact on the communities involved.

This study was done by Dr Sethulego Matebesi, researcher and senior lecturer at the UFS. He focused his research on the dynamics of service delivery protests in South Africa.

Service delivery protests refer to the collective taken by a group of community members which are directed against a local municipality over poor or inadequate provision of basic services, and a wider spectrum of concerns including, for example, housing, infrastructural developments, and corruption.

These protests increased substantially from about 10 in 2004 to 111 in 2010, reaching unprecedented levels with 176 during 2014.

The causes of these protests are divided into three broad categories: systemic (maladministration, fraud, nepotism and corruption); structural (healthcare, poverty, unemployment and land issues); and governance (limited opportunities for civic participation, lack of accountability, weak leadership and the erosion of public confidence in leadership).

In his research, Dr Matebesi observed and studied protests in the Free State, Northern Cape and the North-West since 2008. He found that these protests can be divided into two groups, each with its own characteristics.

“On the one side you have highly fragmented residents’ groups that often use intimidation and violence in predominantly black communities. On the other side, there are highly structured ratepayers’ associations that primarily uses the withholding of municipal rates and taxes in predominantly white communities.”

 

Who are the typical protesters?

Dr Matebesi’s study results show that in most instances, protests in black areas are led by individuals who previously held key positions within the ANC - prominent community leaders. Generally, though, protests are supported by predominantly unemployed, young residents.

“However, judging by election results immediately after protests, the study revealed that the ANC is not losing votes over such actions.”

The study found that in the case of the structured ratepayers’ associations, the groups are led by different segments of the community, including professionals such as attorneys, accountants and even former municipal managers.

Dr Matebesi says that although many protests in black communities often turned out violent, protest leaders stated that they never planned to embark on violent protests.

“They claimed that is was often attitude (towards the protesters), reaction of the police and the lack of government’s interest in their grievances that sparked violence.”

Totally different to this is the form of peaceful protests that involves sanctioning. This requires restraint and coordination, which only a highly structured group can provide.

“The study demonstrates that the effects of service delivery protests have been tangible and visible in South Africa, with almost daily reports of violent confrontations with police, extensive damage to property, looting of businesses, and at times, the injuring or even killing of civilians. With the increase of violence, the space for building trust between the state and civil society is decreasing.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept