Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

UFS Council unanimously reappoints Dr Khotso Mokhele as Chancellor
2015-04-02

 

Dr Khotso Mokhele, Chancellor of the University of the Free State

The Council of the University of the Free State (UFS) unanimously reappointed Dr Khotso Mokhele as Chancellor during its quarterly meeting held on 13 March 2015. He was first appointed in this portfolio by the Council on 4 June 2010.

“It is an honour for the Council to reappoint someone of this stature as Chancellor of the UFS. With his solid academic background and high profile in the business world, Dr Mokhele has been a great asset to the UFS. On behalf of the Council and the university community, I extend a word of appreciation for the work he has done during his first term as Chancellor of the UFS. He is an exceptional leader, and the university community is looking forward to have him as Chancellor for a second term,” said Judge Ian van der Merwe, Chairperson of the UFS Council.

Dr Mokhele was awarded a BSc Agriculture from Fort Hare University, and continued his studies at the University of California Davis (USA) on the Fulbright-Hays Scholarship Programme, completing his MSc (Food Science) and PhD (Microbiology). He was subsequently a postdoctoral fellow at Johns Hopkins University School of Medicine (USA) and the University of Pennsylvania School of Medicine (USA). Dr Mokhele is the recipient of honorary doctorates from nine South African universities including the UFS, and from Rutgers University in the USA.

He was Chairman of the Rhodes Scholarship Selection Committee for Botswana, Malawi, Namibia, Lesotho and Swaziland (2007-2011), and served on the South Africa at Large Rhodes Scholarship Selection Committee for more than 10 years. As President and Chief Executive Officer (CEO) of the Foundation for Research Development (1996-1999) and the NRF from 1999 to 2006, Dr Mokhele played a central role in providing visionary and strategic direction to the South African science system. He was the Founder President of the Academy of Science of South Africa (ASSAf), Founder President and CEO of the National Research Foundation (NRF), Chairperson of the Economic Advisory Council to the Premier of the Free State (2001-2004), and a member of the Advisory Council on Innovation to the Minister of Science and Technology (2003-2007). His role in securing government and international support for the Southern African Large Telescope Project (SALT) is evidence of his dedication to science in South Africa. The success of this project laid the basis for South Africa being selected to host more than 70% of the Square Kilometre Array, an international mega telescope for radio astronomy.

In recognition of his contribution to the development of science, he was the recipient of the Technology Top 100 Lifetime Achievers Award in 2009 and the National Science and Technology Forum Award in 2005. His role in science is recognised internationally. He was an elected Vice-President: Scientific Planning and Review of the International Council for Science and Chairperson of its Committee for Scientific Planning and Review (2005-2008) as well as a member of the Committee on Developing and Transition Economy Countries of the International Social Science Council (2008-2010). He also represented South Africa on the executive board of UNESCO, and was awarded the Member Legion of Honour of the Republic of France for his work in strengthening scientific ties between South Africa and France.

Dr Mokhele currently serves as Special Advisor to the Minister of Science and Technology, the Honourable Naledi Pandor. His current corporate positions include: Non-Executive Chairman: Board of Directors, Impala Platinum Holdings Ltd (Implats); Lead Independent Non-Executive Director: African Oxygen Ltd (Afrox); Non-Executive Director of Zimbabwe Platinum Holdings Ltd (Zimplats); Hans Merensky Holdings Ltd; and Tiger Brands Ltd. He is the President of the Hans Merensky Foundation (South Africa) and a Trustee of SciDev.Net (a web-based scientific magazine based in London, UK) and Start International Inc (USA).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept