Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

New computer centre
2007-05-15

Attending the sod turning ceremony of the University of the Free State's (UFS) new computer centre were, from the left: Mr Abraham Makhalanyane (Director of Sikeyi Construction), Prof. Frederick Fourie (Rector and Vice-Chancellor of the UFS) and Mr Johann Ströhfeldt (Director of Ströhfeldt Construction Group). The centre, which will host about 815 computers, will be erected in a joint venture between the two construction companies.
Photo: Leonie Bolleurs
 

UFS gets new computer centre

The first sod of a new computer centre which will host about 815 computers was turned on the Main Campus of the University of the Free State (UFS) in Bloemfontein today.

The computer centre, which will be situated next to the UFS Sasol Library, will have various state-of-the-art computer laboratories. This is the first new building to be built on the Main Campus since the student centre, Thakaneng Bridge, and will be erected at a total project cost of R19 million.

“The computer centre is an important addition to our strategy to promote e-learning and is a sign of the new era of blended learning which students are now practicing,” said Prof. Frederick Fourie, Rector and Vice-Chancellor of the UFS, during the sod-turning ceremony.

According to Prof. Fourie the building will address students’ need for available computers. “All our students do not have a computer to assist them with their studies. The centre will empower them to complete their studies successfully and will provide them with the opportunity to conduct research in an academic environment,” said Prof. Fourie.

“Various laboratories for among others group work, as well as laboratories where students can work in a quiet environment on individual assignments will be established. Rooms for classes where a computer is a prerequisite to students as well as rooms for examinations, tests and practical sessions will be provided,” said Prof. Fourie.

The computers will not only comprise of traditional programmes, but rooms with programmes for open learning will also be established. Subject specific software will be installed in certain rooms to enable students to obtain a good knowledge of the subject fields.

The computer centre, which will be open seven days a week, will also be at the disposal of UFS staff.

“I am looking forward to this development on the Main Campus. It will be a thrill to see more than 800 students studying in the computer laboratories,” said Prof. Fourie.

The building will be erected in a joint venture between Ströhfeldt Construction Group and Sikeyi Construction, a black empowerment company. Mr Abraham Makhalanyane, Director of Sikeyi Construction, thanked the UFS for the opportunity to be involved with a project of this magnitude. “A project like this is a great responsibility and I am looking forward to work with a team of experts,” he said. Mr Johann Ströhfeldt, Director of Ströhfeldt Construction Group, said: “We have been working with the UFS on construction projects for more than 25 years. I believe that this project will also contribute to the pride and glory of the UFS.”

The expected completion date of the computer centre is May 2008.

Media release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za
14 May 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept