Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Alexander Ramm Cello Recital with Pieter Jacobs (piano)
2016-04-15

Description: Ramm Tags: Ramm

Alexander Ramm

“Ramm plays with enormous musical authority. Unlike many young instrumentalists, he is not intimidated by the reflective or the elegiac; nor is he nervous about the length of pauses, or the creation of inter-phrase silence. He has a phenomenal technique and he demonstrated it to full effect in this captivating performance.” (Cape Times)

Alexander Ramm belongs to the new generation of cellists recognised for his appealing artistic creativity and unprecedented technical skills. Alexander started his musical education at the age of seven at the Glier music school (Kaliningrad) with Svetlana Ivanova. Her extremely serious attitude to music studies and pedagogical talent revealed the rare musical capabilities of this young cellist.

After moving to Moscow at the age of ten, he was accepted to the class of Maria Zhuravleva at the Chopin Moscow College of Music Performance. From 2007, he continued his professional education at the Moscow Conservatory in the class of the renowned musician and the People’s Artist of the USSR, Natalia Shakhovskaya, an outstanding performer and pedagogue who taught most prominent Russian cellists. Since 2012, he has become a postgraduate student at the Hanns-Eisler Hochschule fur Musik under the guidance of the famous cellist, Frans Helmerson.

From the age of nine, when he made his debut as a soloist with the Kaliningrad Chamber Orchestra, Alexander brilliantly performs with solo programmes and as a soloist with leading orchestras in Russia and worldwide.

He is prizewinner at several international competitions:
1st prize: 4th Moscow Competition for young cellists (2003)
1st prize: 1st Cambridge International Boston Competition (Massachusetts, 2005)
Grand-Prix: Moscow Festival of Romantic Music (Moscow, 2006)
4th prize: 5th UNISA International String Competition (South Africa, 2010)
1st prize: 3rd Beijing International Music Competition (Beijing 2010)
1st prize: 1st All-Russia Music Competition (Russia, 2010)
Prizewinner: Janigro Cello Competition (Croatia, 2012)
Prizewinners: Swedish Duo Competition with duo partner Anna Odintsova (2012)
3rd prize: Paulo Cello Competition (2013) – becoming the first Russian prizewinner in the history of this prestigious contest
2nd prize: XV International Tchaikovsky Competition (2015)

Alexander participated in masterclass festivals at Courchevel Academy and Holland Music Sessions, where he took lessons from the famous musicians such as F. Muller, R. Latzko, M. Kliegel and U. Wiesel. In 2011, he took part in the well-known Verbier festival, where he studied with H. Hoffmann, F. Helmerson, M. Suzuki, L. Power and F. Radosh. At the end of the festival, he was awarded the Neva Foundation top-level prize for gifted students.

Alexander cooperates with such outstanding conductors as V. Gergiev, V. Spivakov, A. Levin, K. Orbelyan, V. Polyansky, S. Kochanovsky, M. Fedotov, A. Slutsky, A. Sladkovsky.

He will be accompanied by Pieter Jacobs, a graduate of the University of Pretoria, who then furthered his studies at Yale in the United States, where he pursued his performing career with considerable success as a soloist and chamber musician in Boston, Cambridge and New Haven before returning to South Africa to perform and teach at the University of Pretoria. Pieter is regarded as one of SA’s foremost pianists and chamber musicians.

Programme:

Grieg: Cello Sonata, Op. 36 in A minor (1883)
Barber: Cello Sonata, Op. 6 in C minor (1932)
Prokofiev: Cello Sonata, Op. 119 (1949)
Piazzolla: Le Grand Tango for cello and piano

Date: 22 April 2016
Time: 19:30
Venue: Odeion
Costs: R130 (adults), R90 (pensioners), R70 (UFS staff members), R50 (students and learners), R50 (group booking of 10+). Tickets available at Computicket.

More information: Ninette Pretorius +27(0)51 401 2504.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept