Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Research on locomotion of giraffes valuable for conservation of this species
2016-08-23

Description: Giraffe research 2016 Tags: Giraffe research 2016

Technology was used in filming the giraffes.
According to research, giraffes will slow
down when a drone is positioned
approximately 20 - 30 m away. When the
drone moves closer, they will revert
to galloping.
Photo: Charl Devenish


The meaning of the Arab term Giraffe Camelopardalis is ‘someone who walks fast’. It is precisely this locomotion of their longnecks that encouraged researchers, Dr Francois Deacon and Dr Chris Basu, to study the animals more closely.

Despite the fact that giraffes are such well-known animals, very little research has been done on the manner in which these graceful animals locomote from one place to the next. There are only two known ways of locomotion: the slower lateral walking and the faster galloping. Most animals use these ways of moving forward. It is unknown why giraffes avoid intermediate-speed trotting.

Research of great value to the industry

Research on the manner in which giraffes locomote from one place to the next will assist the industry in understanding aspects such as their anatomy and function, as well as the energy they utilise in locomoting from one place to another. Information on the latter could help researchers understand where giraffes fit into the ecosystem. This data is of great value for large-scale conservation efforts.

Universities working together to collect data

Dr Basu, a veterinarian at the Royal Veterinary College in the UK, has studied the animals at a zoo park in the United Kingdom. He visited the University of the Free State (UFS) in order to expand his fieldwork on the locomotion of giraffes. This study was done in cooperation with Dr Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research in South Africa and other African countries.

The fieldwork for the research, which was done in the Woodland Hills Wildlife Estate and the Willem Pretorius Nature Reserve, preceded research on the movement and the forces involved in the locomotion of giraffes. Due to the confined fenced area in the zoo park, it was practically impossible to study the animals at speed. “The study of actions ‘faster than walking’ is crucial for gathering data on, inter alia, the frequency, length, and time associated with each step.


Technology such as drones offers unique
opportunities to study animals like giraffes.



Technology used to ensure accuracyTechnology such as drones offers unique opportunities to study animals like giraffes. Apart from the fact that it is possible to get high-quality video material of giraffes – moving at speed – it is also a very controlled device that ensures the accuracy of data.

It is the first time ever that a study has been done on the locomotion of giraffes with this level of detail.
Research on the study will be published in the Journal of Experimental Biology.

The project was approved by the UFS ethics committee.

 

 

 

Previous research articles:

9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept