Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

UFS students win Innovation prize
2007-11-05

 

From the left are, front: Kasey Kakoma (member of the winning team) and Ji-Yun Lee (member of the winning team); back: Prof. Herman van Schalkwyk (Dean of the Faculty of Natural and Agricultural Sciences at the UFS), Lehlohonolo Mathengtheng (member of the winning team) and Prof. Gerrit van Wyk (consultant from Technology Transfer Projects who arranged the first phase of the competition).
Photo (Leonie Bolleurs):
 

UFS students win Innovation prize

Prizes to the value of R100 000 were recently handed to students in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) during a prize winners function of the National Innovation Competition.
“The competition is sponsored by the Innovation Fund, which was established by the national Department of Science and Technology and is managed by the National Research Foundation (NRF). The competition seeks to develop innovation and entrepreneurship amongst students in higher education institutions,” said Prof. Teuns Verschoor, Vice-Rector of Academic Operations at the UFS.

Most universities in South Africa take part in the competition. “The first phase of the competition is per university where students can win prize money to the value of R100 000. The three winners then compete in the national competition, where prize money to the value of R600 000 can be won,” said Prof. Verschoor.

Eight teams from the Faculty of Natural and Agricultural Sciences competed in the local competition. The teams had to submit a business plan, which was judged by six external adjudicators.

The winning team from the Department of Microbial, Biochemical and Food Biotechnology submitted their business plan with the title: “Using bacteriophages to combat specific bacterial infections in poultry". The team, consisting of Kasey Kakoma from Zambia, Lehlohonolo Mathengtheng from South Africa, and Ji-Yun Lee from South Korea, were awarded R50 000 in cash. All three students are Master’s degree students in Microbiology in the Veterinary Biotechnology Research group at the UFS.

The team who came second was from the Department of Physics with team leader Lisa Coetzee and they received R30 000. The title of their project was “Light of the future”. The third prize of R20 000 went to Lizette Jordaan of the Department of Chemistry with a project entitled: “Development of a viable synthetic route towards a natural substrate with possible application in the industry”.

Prof. Gerrit van Wyk, former dean of the UFS Faculty of Natural and Agricultural Sciences and consultant for Technology Transfer Projects, annually drives this competition.

In his announcement of the winners of the first phase of the 2007 National Innovation Competition, Prof. Herman van Schalkwyk, Dean of the UFS Faculty of Natural and Agricultural Sciences, said innovation and entrepreneurship are important to stimulate and create sustainable economic growth in South Africa. “Through this competition universities get the opportunity to show to South Africa its capabilities in the arena of innovation and commercialisation of ideas,” he said.

To proceed to the second phase of the competition, the business plans of the three finalists from each qualifying higher education institution will be submitted for the national competition. The best three students from each participating institution will exhibit their innovations at the national awards ceremony early in 2008. The top ten entrants and subsequently the best three business plans from the total entries will then be short listed. The prize money won at the national competition has to be used for the commercialisation of the project or the founding of a company.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
5 November 2007
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept