Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Leonie Bolleurs | Photo Supplied
WJ swart
Prof Wijnand Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

Plant health is important for the survival of our planet and all its living creatures. Now, imagine an instrument that contains a DNA chip from virtually every known plant pathogen, where one can simply snip off a piece of the infected plant material, slip it into the ‘plant disease tricorder’, and within seconds you have not only a diagnosis of the disease, but all the information about its control too.

According to Prof Wijnand Swart, Professor of Plant Pathology in the Department of Plant Sciences at the University of the Free State (UFS) and President of the Southern African Society for Plant Pathology (SASPP), this concept might be a bit far-fetched, but is a distinct possibility for the not-too-distant future. “Without a doubt …,” he believes.

He was recently a guest on a series of radio talks on plant health in South Africa, hosted by the National Science and Technology Forum (NSTF) in partnership with Plaas/Farm TV (YouTube broadcaster). His talk on the topic, Whither (or wither) Plant Pathology in the next 50 years, was specifically focused on understanding the latest research and dynamics of the discipline in a South African context.

In terms of this futuristic perspective, he says collaboration between plant pathologists and biomedical and aeronautical engineers, nanotechnologists, and computer scientists will aid the development of micro-sensory technologies for the detection of new plant diseases that are relevant to biosecurity, plant disease diagnostics, and epidemiological modelling.

In his discussion, Prof Swart referred to the work of Prof John Lucas, former Head of Plant Pathology and Microbiology at the Rothamsted Research Station in the United Kingdom, who believes that there are three key issues facing plant pathologists in the 21st century. These are the strengthening of food security while simultaneously safeguarding the health of associated ecosystems and reducing the dependency on natural resources; the creation of pest and disease control systems that are sustainable and not compromised by the evolution of pest and pathogen strains; and the development of suitable crop protection technologies.

Future technologies

Based on the work of Prof Lucas, Prof Swart states that future technologies in plant health will develop in five areas. In the first area, he says DNA-based technologies will greatly increase the speed, sensitivity, and accuracy of pest and pathogen detection and diagnosis.

Also key here, is the integration of nanomaterials into disease management strategies and diagnostics. He says in the past decade, the use of nanotechnology in phytopathology has grown exponentially. According to him, nanotechnology can increase productivity using nano-pesticides and nano-fertilisers, improve soil quality by means of nano-zeolites and hydrogels, stimulate plant growth using nanomaterials, and provide smart monitoring via nano-sensors and wireless communication devices.

Prof Swart says according to Prof Lucas, the second area in which plant health technologies will grow is plant defence and immunity. When induced, plant resistance primes plants to deal with a diversity of biotic and abiotic stresses. Prospects of inducing chemically modulated plant resistance via biological agents (such as engineered microbes), might result in low-cost seed treatments, thereby removing the need for expensive chemical spray regimes.

Technology development in plant health will also become more evident in genetic diversification. Prof Swart believes sequencing the genomes of major crop species and their wild relatives will expand the known gene pool and diversify genetic resources available to plant breeders.

According to him, a new era is beckoning, where the prospect of crop pharmacology based on signal molecules and their receptors will become a reality. It will be based on the development of novel chemistries designed to manipulate specific molecular targets, by either regulating host resistance or disabling the disease-causing processes of pathogens.

The fifth area in which plant health technologies will develop, is ecological approaches to disease control. He says by understanding the ecology of pathogens, our ability to exploit their natural enemies will improve. Ecological approaches to plant disease control will have a significant impact on the introduction of invasive pathogen species, while the effect of climate change will influence the emergence of new plant diseases and epidemics. He strongly believes that it is important to take a holistic approach to understanding how and why plant pathogenesis occurs if we are to manage diseases effectively.

Future challenges

The development of these new technologies is very important, as there are several challenges that plant pathology will face in the future. These include the increasing demand for food to support the growing global population; the decreasing production potential of agriculture due to competition for fertile land; the increased risk of plant disease epidemics resulting from agricultural intensification; the depletion of natural resources; and the influence of climate change on interactions between plants and their pests or pathogens.

Prof Swart believes a ‘systems level understanding’ of phytobiomes (consisting of plants, their environment, and all their associated organisms) will enable us to produce sufficient crops to meet global demands while minimising negative impacts on our environment.

He concludes, saying that plant pathology will evolve as an interdisciplinary science. He adds that future research will focus on new problems that are traditionally seen as outside the core discipline of plant pathology. Furthermore, food security will be a dominant and important driver of plant pathology research, while the impact of climate change on plant diseases will be very significant. Finally, that the adaptive potential of plant and pathogen populations will be one of the most important predictors of the magnitude of climate change effects.

LISTEN: radio interview


News Archive

Centre to enhance excellence in agriculture
2008-05-09

 

At the launch of the Centre for Excellence were, from the left, front: Ms Lesego Sejosengoe, Manager: Indigenous Food, Mangaung-University Community Partnership Project (MUCPP), Ms Kefuoe Mohapeloa, Deputy Director: national Department of Agriculture; back: Mr Garfield Whitebooi, Assistant Director: national Department of Agriculture, Dr Wimpie Nell, Director: Centre for Agricultural Management at the UFS, and Mr Petso Mokhatla, from the Centre for Agricultural Management and co-ordinator of the Excellence Model.
Photo: Leonie Bolleurs

UFS centre to enhance excellence in agriculture

The national Department of Agriculture (DoA) appointed the Centre for Agricultural Management within the Department of Agricultural Economics at the University of the Free State (UFS) as the centre of excellence to roll out the excellence model for small, medium and micro enterprises (SMME’s) for farmers in the Free State.

The centre was launched this week on the university’s Main Campus in Bloemfontein.

The excellence model, which is used worldwide, was adapted by the Department of Trade and Industry as an SMME Excellence Model. The DoA then adapted it for agricultural purposes.

“The excellence model aims to assist farmers in identifying gaps in business skills. These gaps will be addressed by means of short courses. It will help to close the gap between the 1st and 4th economy,” said Dr Wimpie Nell, Director of the Centre for Agricultural Management at the UFS.

The UFS – as co-ordinator of the SMME Excellence Model – the DoA, the private sector, municipalities, small enterprise development agencies, and non-governmental organisations will be working together to enhance excellence in agricultural businesses in the Free State.

The benefit of the model is that it changes the mindset of emerging farmers to see agriculture as a business and not as a way of living. Dr Nell said: “We also want to create a culture of competitiveness and sustainability amongst emerging farmers.”

“The Free State is the second province where the model has been implemented. Another four provinces will follow later this year. Altogether 23 officers from the DoA, NGO’s and private sector have already been trained as facilitators by the Centre of Excellence at the UFS,” said Dr Nell.

The facilitator training takes place during four contact sessions, which includes farm visits where facilitators get the opportunity to practically apply what they have learnt. On completion of the training facilitators use the excellence model to evaluate farming businesses and identify which skills (such as financial skills, entrepreneurship, etc.) the farmers need.

The co-ordinator from the Centre of Excellence, Mr Petso Mokhatla, will monitor the facilitators by visiting these farmers to establish the effectiveness of the implementation of the model. Facilitators must also report back to the centre on the progress of the farmers. This is an ongoing process where evaluation will be followed up by training and re-evaluation to ensure that successful establishment of emerging farmers has been achieved.

According to Ms Kefuoe Mohapeloa, Deputy Director from the national Department of Agriculture, one of the aims of government is to redistribute five million hectare of land (480 settled people per month) to previously disadvantaged individuals before 2010. The department also wants to increase black entrepreneurship in rural areas by 10% this year, increase food security by utilising scarce resources by 10%, and increase exports by black farmers by 10%.

“To fulfill these objectives it is very important for emerging farmers to get equipped with the necessary business skills. The UFS was a suitable candidate for this partnership because of its presence in the Accelerated and Shared Growth Initiative of South Africa (ASGISA). With the Jobs for Growth programme, ASGISA is an important extension to the Centre of Excellence and plays a major role in the implementation of the model to improve value-chain management,” said Ms Mohapeloa.

Twenty facilitators will receive training in June and another 20 in October this year. “The more facilitators we can train, the more farmers will benefit from the model,” said Dr Nell.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
8 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept