Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2022 | Story Dr Qinisani Qwabe
Dr Qinisani Qwabe
Dr Qinisani Qwabe

South Africa recently witnessed a catastrophic natural disaster that resulted in the loss of life, livelihoods, and infrastructural damage. This occurred in KwaZulu-Natal where hundreds of people lost their lives as a result of extensive flooding and mudslides. President Cyril Ramaphosa declared a national state of disaster to which we should all respond. Specific reference was made to the public and private sectors, as well as civil society.

While I applaud the various stakeholders that have extended a helping hand, my heart bleeds for the vulnerable groups whose voices remain unheard, even under normal circumstances. One cannot help but wonder if aid will reach the isolated regions that suffered the adverse effects of these heavy rains, or if all developmental efforts will be prioritised to certain economic hubs of the province such as the eThekwini Metro and the capital, uMgungundlovu.

KwaZulu-Natal is among the poorest provinces in the country. Corroborating this claim is a report that was released by Statistics South Africa earlier this year which reveals that about 52% of the province’s population are considered to be ‘poor’,and live at the lower end of the poverty line.

Drawing from my experiences of the rural communities of KwaZulu-Natal with whom I have worked, many suffer from the triple challenge of poverty, inequality, and unemployment, and rely on agriculture for their livelihood and to put food on the table. Their supplementary income is obtained from government support grants. The graphic scenes that have been shown on the media illustrate the devastating effects of the heavy rains in regions within the agricultural sector. Fields have been washed away, crops and livestock have been lost. This is happening when the province is still trying to resuscitate its economy after the widespread looting that took place in July last year, which had a calamitous effect on businesses and livelihoods.

While this is an injury mainly for the people of KwaZulu-Natal, it is my wish that we all join hands in contributing towards the restoration of livelihoods. In agreement with the president’s assertion, we can all play a part in rebuilding the province. This includes institutions of higher learning, particularly the Community Engagement Directorates whose mandate is to drive socioeconomic development to external communities.

Related article:
Opinion: KZN floods expose significant socio-economic and environmental vulnerabilities

KZN FLOODS

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept