Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 April 2022 | Story Lacea Loader
Qwaqwa Campus

The preliminary finding of the urgent investigation into the fire on the Qwaqwa Campus of the University of the Free State (UFS) on the evening of Monday 4 April 2022, indicates that the two buildings were intentionally set alight. This was established by the South African Police Service (SAPS) and the university’s Protection Services this morning.

Since the outbreak of the fire, one person – who is a registered student – has been arrested by SAPS, and a process is underway to identify more suspects. The UFS will institute the necessary disciplinary action against suspects who are registered students. Similarly, criminal charges will also be instituted.

The buildings, which housed the clinic and a computer laboratory, were almost completely destroyed, with damage to both buildings estimated at R35 million.

The university management condemns the destructive behaviour of the students and condemns criminal behaviour such as this in the strongest terms. “The Qwaqwa Campus, as well as the entire university community, are shocked by this devastating and irresponsible act – especially after the campus experienced violent protest action this year, which significantly affected the academic programme,” said Prof Francis Petersen, Rector and Vice-Chancellor of the UFS.

The academic programme on the Qwaqwa Campus continues, mostly online for this week, and students will be informed by their faculties about the revised schedule, as well as arrangements regarding tests and assessments scheduled for this week on the campus.

The campus remains open; the university's Protection Services is on high alert and is monitoring the situation on campus closely.

It is alleged that students were unhappy about the payment of allowances they are due to receive from the National Student Financial Aid Scheme (NSFAS) in April 2022. To alleviate this, the UFS has so far this year offered students allowances for food and books amounting to more than R71 million, while they are waiting for their NSFAS subsidies to be released. 


Released by:
Lacea Loader (Director: Communication and Marketing)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za


News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept