Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 April 2022 | Story Jóhann Thormählen
Shimlas
Jooste Nel was one of the Shimla stars in 2022. The centre was chosen as the Player That Rocks against the Madibaz this week. Photo: ASEM Engage, Ian Fairley

It was their aim to entertain, and now the University of the Free State (UFS) Shimlas want to continue in the same vein in front of their home fans in the Varsity Cup semi-final that will be played on Shimla Park on the Bloemfontein Campus on Monday 18 April 2022 at 19:00.

According to Thabang Mahlasi, the Shimla captain, his side is excited to have a home advantage against the University of Pretoria (UP) Tuks and would like to reward their supporters by scoring more tries.

The Shimlas also got their faithful involved this week by launching an ‘Every Fellow’ campaign on social media to encourage supporters to stand together and sing the Shimla song.

One of the Shimlas’ biggest fans, Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, says he will cheer on the team, wishing for another Varsity Cup trophy if the UFS reaches the final. “The UFS is home to top sports stars and winning the Varsity Rugby Cup – following our triumph in the Varsity Netball competition – will be great. Good luck to the team and know that every fellow Kovsie is behind you.”  

Big turnaround
The UFS defeated the Nelson Mandela University 72-24 in Gqeberha in its last league match this week to end first on the log. It was the fourth time in 2022 that the Shimlas scored 50 points or more.

This means they will host UP Tuks, who finished fourth, at Shimla Park on Monday, while the University of Cape Town and Stellenbosch University will play in Cape Town in the other semi-final.

The UFS play against the defending champions in the semi-final in what will be a tight affair. In a previous encounter with UP Tuks this month, Shimlas won 26-15.

It was quite a turnaround for the Shimlas, who finished seventh last year. It will be the first time since 2019 that they play in a semi-final.

“What a big confidence booster to play in front of our own supporters,” says Mahlasi.

“Apart from that, we don’t have to travel, which means our bodies will be fresh come Monday.”

He thanked the fans for their continued support and says, “they will be in for quite a show on Monday”.

Sign of unity
The Shimlas got their supporters behind them with a campaign on their Instagram page (@shimlasrugby). Fans can win money if they sing the Shimla song, ‘Every Fellow’, in a video, or use the audio with their favourite Shimla memory.

Mahlasi says the idea is to get fans to sing the song to motivate the team while playing.

“And also, after the game it would be nice if we could all stand and sing together. As a sign of unity.”

“Our main focus is scoring tries,” says Mahlasi.

“For us, it’s not about the semi-final. For us, it’s just another opportunity to score as many tries as we can.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept