Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 April 2022 | Story By Jóhann Thormählen | Photo ASEM Engage, Hannes Naude
Shimlas
The fullback Litha Nkula scored one of four tries for the Shimlas in wet conditions against the University of Pretoria.

They did have a more conservative plan in the soaking wet conditions, but it was the attacking style of the University of the Free State (UFS) Shimlas that shone through.

According to André Tredoux, the Shimlas Head Coach, his players followed their attacking instinct against the University of Pretoria (UP) on Monday to book a spot in the Varsity Cup semi-finals.

And that is also why the UFS is the team that scored the most tries in the tournament.

The team defeated UP 26-15 in trying conditions at Shimla Park and will finish among the top four. This, even though the Shimlas are still playing the Madibaz (Nelson Mandela University) in Gqeberha in their last league encounter on Monday (11 April 2022).

The UFS is at the top of the log (32 points) and will play in its first semi-final since 2019.

Anxious moments

Many would say an expansive approach is risky when it rains, but the Shimlas proved them wrong this week.

“Our vision for the team is to play according to our DNA (attacking rugby),” says Tredoux.

He admits that the wet conditions made them tweak this a bit: “But we still encouraged the players to attack the space that our opponents gave us.”

“Our execution and intensity in the first 34 minutes were superb.”

Six minutes before half-time, his side was leading 19-3 against UP when the game was stopped due to impending lightning. It could have been a bad result if play had not continued, as 40 minutes was needed for a result.

“After the good start, we were quite anxious. We knew that we at least had to play until half-time to get a result.”

Outscoring opponents

It is their philosophy of playing without fear and scoring tries that has helped the Shimlas outscore other Varsity Cup teams.

The UFS scored 48 tries in eight rounds, with the University of Cape Town Ikeys second on 38 tries.

But the Kovsies are also solid on defence, as they have conceded only 21 tries. Only UP (20) conceded less.

There is, however, not too much talk in the Shimla camp about a semi-final yet.

“We are very happy with where we are on the log at the moment.

“We will continue working hard and playing good rugby. But we only focus on the next match,” says Tredoux.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept