Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
07 April 2022 | Story By Jóhann Thormählen | Photo ASEM Engage, Hannes Naude
Shimlas
The fullback Litha Nkula scored one of four tries for the Shimlas in wet conditions against the University of Pretoria.

They did have a more conservative plan in the soaking wet conditions, but it was the attacking style of the University of the Free State (UFS) Shimlas that shone through.

According to André Tredoux, the Shimlas Head Coach, his players followed their attacking instinct against the University of Pretoria (UP) on Monday to book a spot in the Varsity Cup semi-finals.

And that is also why the UFS is the team that scored the most tries in the tournament.

The team defeated UP 26-15 in trying conditions at Shimla Park and will finish among the top four. This, even though the Shimlas are still playing the Madibaz (Nelson Mandela University) in Gqeberha in their last league encounter on Monday (11 April 2022).

The UFS is at the top of the log (32 points) and will play in its first semi-final since 2019.

Anxious moments

Many would say an expansive approach is risky when it rains, but the Shimlas proved them wrong this week.

“Our vision for the team is to play according to our DNA (attacking rugby),” says Tredoux.

He admits that the wet conditions made them tweak this a bit: “But we still encouraged the players to attack the space that our opponents gave us.”

“Our execution and intensity in the first 34 minutes were superb.”

Six minutes before half-time, his side was leading 19-3 against UP when the game was stopped due to impending lightning. It could have been a bad result if play had not continued, as 40 minutes was needed for a result.

“After the good start, we were quite anxious. We knew that we at least had to play until half-time to get a result.”

Outscoring opponents

It is their philosophy of playing without fear and scoring tries that has helped the Shimlas outscore other Varsity Cup teams.

The UFS scored 48 tries in eight rounds, with the University of Cape Town Ikeys second on 38 tries.

But the Kovsies are also solid on defence, as they have conceded only 21 tries. Only UP (20) conceded less.

There is, however, not too much talk in the Shimla camp about a semi-final yet.

“We are very happy with where we are on the log at the moment.

“We will continue working hard and playing good rugby. But we only focus on the next match,” says Tredoux.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept