Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

OSM Camerata hosts concert as part of International Ictus Music Competition
2017-05-29

 

Description: OSM Camerata Ictus Music Competition Tags: OSM Camerata Ictus Music Competition
In 2015 the Odeion School of Music Camerata premiered the Hendrik Hofmeyr
Double Concerto
for Recorder and Harpsichord with esteemed South African artists
Stefan Temmingh and Erik Dippenaar.
Photo: Supplied

 

The Odeion School of Music Camerata (OSMC) at the University of the Free State (UFS) will be celebrating its fifth birthday in style when it participates in the 2017 International Ictus Music Competition. The competition is an innovative new online competition for ensembles, orchestras and band/wind ensembles (middle school, high school, youth ensemble, community ensemble and college/conservatory/university) that compete through video submission.

Opportunity for fundraising

As part of the competition the OSMC will host a concert that will also serve as a fundraising opportunity. The concert takes place on 31 May 2017 in the Odeion on the Bloemfontein Campus. The OSMC was strategically founded in 2012 by Marius Coetzee as the Odeion School of Music’s flagship chamber ensemble with the main objective of creating a catalyst for excellence.

International exposure at stake
Substantial money prizes are at stake in the International Ictus Music Competition and ensembles will receive written feedback from a jury consisting of renowned maestri including Stilian Kirov, who was awarded 1st Prize in the Debut Berlin Competition on 18 May 2017. Top prize-winners will be interviewed by a representative from the competition. It will be broadcast internationally to enable them to share their hard work and passion for music with the world.

Over the past five years the OSMC has premiered 10 new works by South African composers specially commissioned for them. A highlight remains its participation in the 13th International Conservatory Festival in St Petersburg Russia, where the ensemble received a standing ovation during a gala concert in the Glazunov Concert Hall.

Date: 31 May 2017
Time: 19:30
Place: Odeion (Bloemfontein Campus)
Entry: R20


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept