Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Societal perceptions of women in politics in Cameroon must change
2017-08-30

 Description: Prof Atanga readmore Tags: Prof Lilian Atanga, University of Bamenda, Faculty of Humanities, Centre for Africa Studies, political participation of women 

Prof Lilian Lem Atanga presented a lecture,
Gender, Discourse and Cognition and Implications on
Political Participation, 
as part of the First Humanities
and Gendered Worlds Lecture 2017.
Photo: Charl Devenish


Women have not internalised the fact that they can participate on an equal footing in politics with men. This is one of the conclusions made by Prof Lilian Lem Atanga in a study of the political participation of women in Cameroon.
“There still is a strong belief that women can’t deliver the goods (in areas such as politics),” Prof Atanga said. According to her, stereotypes were still entrenched in Africa and a lot had to be done to change societal perceptions of the role of women in politics.

Poor representation of women in politics
Prof Atanga, an associate professor at the University of Bamenda in Cameroon, was guest speaker at the First Humanities and Gendered Worlds Lecture 2017. The lecture was hosted by the Faculty of Humanities and the Centre for Africa Studies (CAS) at the University of the Free State (UFS) in the Equitas Auditorium, Bloemfontein Campus, on 3 August 2017. The title of the research fellow’s lecture at the CAS lecture was Gender, Discourse and Cognition and Implications on Political Participation.
She noted that although there had been a marked increase in the political participation of women in Cameroon, it still was insufficient. Of the 24 million people in the country, 52% were women but only 20% of the senators and 31% of parliamentarians were women. 

Gender-segregated roles affect participation 
And there are many reasons for this. “A lot more women still believe in gender-segregated roles and this affects their political participation.” Many men also don’t approve of women’s political participation.
In her study Prof Atanga found that stereotypes were also emphasised in the way the media in Cameroon reported on the roles of women. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept