Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

UFS DiMTEC will help compile national emergency management system
2017-10-11

Description: UFS DiMTEC will help compile national emergency management system Tags: UFS DiMTEC will help compile national emergency management system

Preparedness and response are the two most important aspects of managing disaster when it strikes. Prof Andries Jordaan, Head of the Disaster Management Training and Education Centre for Africa (DiMTEC) at the University of the Free State (UFS) recently attended an incident command course in California in the US.

Learning from US disaster management systems
More than 20 specialists from 17 countries attended the course where participants were introduced to the National Incident Management System (NIMS) in the US. The system was implemented after lessons learned during 9/11. “According to the NIMS structure, all government organisations at all levels as well as emergency agencies had to standardise terminology and systems,” said Prof Jordaan.

The professor also had the opportunity to visit among others the Federal Emergency Management (FEMA) headquarters in California, some State Coordination Centres as well as several other disaster management centres. He also had the chance to shadow an Incident Management Team (IMT) during active operations.

Providing training for local disaster management
Insight gained during this course, as well as Prof Jordaan’s experience as senior officer in the South African National Defence Reserve Forces, provided him the necessary background to conduct training and give assistance in terms of disaster management.

Through DiMTEC Prof Jordaan will assist the National Disaster Management Centre with the implementation of a national emergency management system. He will also provide training for incident management teams.

“DiMTEC is currently also in the process of developing a Master module in disaster response. Command and control and Incident Command will form a sub-module in the disaster response module,” he said.

From South Africa, Prof Jordaan was joined on the course by General Elias Mpumelelo Mahlabane from the South African Police Services, who is responsible for disaster management in the SAPS. Savage Breytenbach, a trainer in rural fire fighting who assists Mangaung with command and control structures, also attended the course.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept