Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

New research informs improved treatment of brain inflammation
2017-10-13

Description: Sebolai and Ogundeji Tags: Microbiologist, Dr Adepemi Ogundeji,  

Dr Adepemi Ogundeji, researcher in the Department of Microbial,
Biochemical and Food Biotechnology at the
University of the Free State,
and Dr Olihile Sebolai,
her study leader from the same department.
Photo: Charl Devenish



Microbiologist Dr Adepemi Ogundeji has uncovered a new use for an old medicine that can potentially save lives and money. Under the guidance of her study leader, Dr Olihile Sebolai, Dr Ogundeji set out to fight a fungal disease caused by Cryptococcus neoformans. Drs Ogundeji and Sebolai are from the University of the Free State Department of Microbial, Biochemical and Food Biotechnology. 

Dr Ogundeji is passionate about education. “My aim will always be to transfer knowledge and skills in the microbiology field,” she said. “Dr Ogundeji’s study is celebrated in that it found a new purpose for existing medicines. An advantage of repositioning old medicines is by-passing clinical trials, which sometimes take 20 years, and the safety of such medicines is already known,” Dr Sebolai, explained.

Cryptococcus infections are difficult to control and often lead to brain inflammation. In layman’s terms: “Your brain is on fire”. People with HIV/Aids are especially vulnerable, surviving only about three months without treatment. Such patients may present with a Cryptococcus-emergent psychosis, and some with an out-of-control inflammatory condition when initiated on ARVs. 

Dr Ogundeji found that the clinically recommended dosage of aspirin (anti-inflammatory medicine), and quetiapine (anti-psychotic medicine) is sufficient to control the infection. Her exceptional work was readily published in some of the foremost journals in her field, namely, Antimicrobial Agents and Chemotherapy and Frontiers in Microbiology

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept