Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Dean of student affairs leaves the UFS after 29 years
2008-12-11

Prof. Teuns Verschoor (left), Acting Rector of the UFS, and Dr Luyt during his farewell function. Prof. Verschoor and Dr Luyt worked together in student affairs at the UFS for 26 years. Prof. Verschoor was Dean of Student Affairs before Dr Luyt took over the reigns from him.

Photo: Lacea Loader

 

The Dean of Student Affairs at the University of the Free State (UFS), Dr Natie Luyt, will be leaving the university after 29 years of service.

Dr Luyt decided to retire in order to spend more time with his wife, Ria, and his family. He will also be involved with his farm on a full-time basis.

“I have experienced a lot during my career and have learnt a lot from the staff and students at the UFS. There are students of exceptional quality at the university and it was a privilege to work with these young people. It was also a privilege to see the UFS grow to become the exceptional institution it is today,” Dr Luyt said during his farewell function this week.

Dr Luyt started working at the Department of Political Science of the UFS in 1980 and was appointed as Director of Student Affairs in 1997 and in 2005 as Dean of Student Affairs. During this time he was also closely involved with the Abraham Fischer Residence, where he was residence head since 1982.

Prof. Teuns Verschoor, Acting Rector of the UFS, said in his farewell message that the UFS has appreciation for Dr Luyt’s decades of service. “Dr Luyt had a meaningful life at the UFS. We have appreciation for his ability to deal with difficult cases and for his kind heart where student affairs are concerned. He will be remembered for the way in which he always knew what went on in the residences and that he always put the needs of students first,” said Prof. Verschoor.

Dr Choice Makhetha, Deputy Dean of Student Affairs at the UFS, will act as dean until the post is filled.
 

Media Release
Issued by: Lacea Loader 
                Assistant Director: Media Liaison 
                Tel: 051 401 2584 
                Cell: 083 645 2454 
                E-mail: loaderl.stg@ufs.ac.za
11 December 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept