Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Romania and UFS work together on diagnostic programme
2009-04-28

 
Here are, from the left: Dr William Rae with Prof. Chirvase and Prof. Caramihai of the Romanian research team during their visit to Bloemfontein.
Photo: Supplied
 
A group of academics of Romania visited the Department of Medical Physics of the Faculty of Health Sciences at the University of the Free State (UFS) recently. Proff. Mihai Caramihai and Ana Chirvase are senior researchers of the Facultatea de Automatica & Calculatoare, Universitatea Politehnica Bucuresti who are working together with Prof. Charles Herbst and Dr William Rae of the UFS on the project MAmmary Malignancy Modelling using Artificial intelligence, ROmania South Africa, or Mamma Rosa. It is part of a larger local project aimed at implementing a computer-aided diagnosis programme (CAD), designed within the UFS's Department of Medical Physics, and which will take into account some of the South African requirements for computerised diagnostic radiology support. The National Research Foundation (NRF) provided travel funding and Prof. Herbst and Dr Rae visited Bucharest in November 2008 to collaborate with the Romanians. The visiting Romanian researchers were involved in a similar project where they were planning to model the changes in tumours as they grow and as they are treated. Dr Rae says there are many synergies between the two departments. The project has many aspects and there are several possibilities for related sub-projects. As a result the UFS has been able to attract three people to be involved in the project and they will do their Ph.Ds with the UFS. On the visit to Bloemfontein the roles of the researchers in the project were defined and the programme for the three-year collaboration was established. The stimulus created as a result of this collaboration has resulted in projects that will continue for at least the next four years.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept