Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Cochlear implant changes Magteld's world
2009-11-06

The microphone is ready for Magteld Smith’s (second from the left) first radio interview after the cochlear implant was switched on by Mr Henk Wolmarans (right) of MedEl. With them are, from the left: Ms Vicki Fourie, Deaf Miss SA, Ms Eunika Smith from the SABC and Prof. Jonathan Jansen.
Photo: Leatitia Pienaar


Magteld Smith gave her first steps towards the world of the hearing when her cochlear implant was switched on in the Universitas Hospital this week.

A whole team was there to share her joy and disbelief and amazement the moment she could hear noises, voices and conversations. Among them were the Rector and Vice-Chancellor of the University of the Free State (UFS), Prof. Jonathan Jansen, and the acting dean of the Faculty of Heath Sciences at the UFS, Prof. Gert van Zyl.

“I can hear my own voice! I haven’t heard it for a long time. My wish is that every deaf child can get something like this,” she said while prodding Prof. Jansen to speak so that she can hear his voice.

Magteld is working at the university's Centre for Health Systems Research and Development and was deaf since birth. She lost her last bit of hearing due to meningitis last year. Her hearing aids could then not assist her to communicate and a cochlear implant was the only option.

A donation by the Austrian company MedEl made the implant possible. Prof. André Claassen, Head of the Department of Otorhinolaryngology at the UFS, says MedEl was also instrumental in the establishment of the implant programme at the Universitas Hospital and sponsored the first five implants at a total cost of R1 million.

Prof. Claassen says 27 implants have already been done here, but it came to an abrupt halt due to a lack of funds. Strong hearing aids are expensive and cochlear implants are even more expensive at R200 000 each. People with hearing disabilities must be identified at an early age as the brain’s ability to learn sound and voice diminishes after the age of three.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept