Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2022 | Story Elsabé Brits
Andre Roodt and Alice Brink
Prof Andreas Roodt and Prof Alice Brink are two of the inventors of the ‘Multinuclear complexes and their preparation patent.

According to the World Health Organisation (WHO), cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020, or nearly one in six. The most common cancers are breast, lung, colon, rectum, and prostate cancers. There is a constant need to provide methods to diagnose and treat cancer-related tumours.  Current research strategies focus on eliminating cancer cells with the minimum damage to surrounding healthy cells.

A limitation of current technologies is that they are mostly based on the separate identification of cancer (diagnostic), followed by treatment (therapy) using chemotherapy and/or radiotherapy. To fit both needs at the same time and with similar or identical compounds, the principle of theranostic medicine was identified. This concept employs both diagnosing (by imaging) cancer and delivering therapy (treatment) simultaneously, which has been receiving increased attention internationally.

Collaborating with the University of Zurich
A University of the Free State (UFS) team, together with a team from the University of Zürich, conducted exciting research in this area and filed a patent titled ‘Multinuclear complexes and their preparation’. The patent was granted in South Africa and by the European Patent Office. It is being validated in selected European countries. The patent is pending in the USA, Japan, Hong Kong, and India. The inventors from the UFS are Prof Andreas Roodt, Prof Alice Brink, Dr Pennie Mokolokolo, and Dr Vincent Dumisani Kama. The approach that their technology takes is to enable the synthesis of a multinuclear compound/s, which may contain different pre-selected radioisotopes, to allow both imaging and therapy to the cancer site(s) with one and the same metal-organic complex.

So far, high-yield production of compounds has been successfully innovated, which contain both an imaging (in particular the widely utilised imaging isotope Technetium-99m) and therapeutic (typically the therapeutic isotope Rhenium-186) radioactive isotope(s), optionally carrying an additional cytotoxic agent. (Chemotherapy uses anti-cancer [cytotoxic] drugs to destroy cancer cells.)

Nuclear medicine technologies
In the next phase of the research, a lead compound portfolio of four to five model pharmaceuticals containing these metal nuclides with appropriate directing groups to target cancer sites will be designed and constructed. A number of these entities are known and can be introduced through different techniques. These will then undergo full characterisation and efficacy evaluation in biological models (in vitro), followed by extensive animal and human trials.

The technology will be delivered as a product or service in the way that current nuclear medicine technologies are delivered.

The fact that this product(s) contains both imaging and therapeutic radionuclides or cytotoxic modalities, enables detailed tracking of the pharmaceutical and monitoring of the tumours' response to the therapy. Not directly related to the patent, but an asset to it, is the fact that the incorporation of rhenium with a high atomic number (Z = 75) opens the additional opportunity to utilise the multinuclear compounds also as radiosensitisers. Synergistic effects, enhancing the therapeutic efficacy, can thus be expected in combination with radiotherapy.

The UFS would like to partner with a pharmaceutical company working in the field of nuclear medicine to commercialise this technology. Interested parties can contact Ravini Moodley at MoodleyR5@ufs.ac.za

News Archive

Diversity gains ground in SRC election
2005-08-19

 

The University of the Free State (UFS) reached another milestone in its transformation process last night (Tuesday 16 August 2005) when a more diverse group of students than ever before were elected to serve on the Main Campus SRC.  

In addition to this, the UFS experienced a smooth and problem-free election process – unlike recent years when the Main Campus SRC elections were frequently disrupted or marred by attempts of intimidation or obstruction.

The election took place on Monday 15 August 2005 and the results were announced last night (Tuesday 16 August 2005) by Dr Ezekiel Moraka, Vice-Rector:  Student Affairs at the UFS.

Seven black students are to serve on the Main Campus SRC, the highest number of black students ever to be elected on the Main Campus SRC since black students were admitted to the UFS in the late 1980’s. 

Nine of the 18 SRC members were directly elected and nine on the basis of proportional representation (PR).   The PR system was introduced after amendments to the constitution of the Main Campus SRC were approved by the UFS Council in June 2005. 

According to Dr Moraka the elections on the Main Campus were a resounding success.  “We received double the amount of votes this year: A total of 4 846 votes were cast, while 396 votes were spoilt.  Last year only 2 192 votes were cast,” said Dr Moraka.

Dr Moraka said that there were no disruptions of the process and no objections regarding the voting process were received.

Mr Graeme Bradley, thirdyear student in B Com Human Resource Management, was elected as SRC President of the Main Campus for 2005/2006.  Mr Bradley was SRC representative for Sports, Arts and Culture in 2004/2005.

In the PR section of the election, Here XVII (with 36,1% of  the vote) and Sasco (with 36% of the vote) received an equal amount of seats (3) for the SRC.  These percentages also provided them with fourteen (14) seats for the Student Parliament, which consists of 40 seats. 

“This outcome is significant to us as, for the first time we have a clear indication of what the actual support of these affiliated organisations is on campus,” said Dr Moraka.  


Media release

Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za

17 August 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept